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A matching is stable if there is no blocking pair.

A pair (𝑚,𝑤) is blocking if 𝑚 prefers 𝑤 to his match, and 𝑤 prefers 
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and there can be more than one.

What is the maximum number of stable matchings?

I.e. as the size of the instance increases, how fast can we make the 
number of stable matchings increase?
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Main Result

There is a universal constant 𝐶 such that every 
stable matching instance with 𝑛 men and 𝑛 women 

has ≤ 𝐶𝑛 stable matchings.
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𝑢 dominates 𝑣 if 𝑣 ≺ 𝑢.

Downset: a set of elements, and 
everything they dominate. Downset
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Another of Knuth’s problems from 1976:

Find a concise description of the set of stable matchings.

Idea:

Start at the man-optimal matching, and jump from one matching to 
another, getting closer to the woman optimal matching.

There can be exponentially many stable matchings

But there are only polynomially many “simple transformations” to jump 
from one stable matching to another.
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A trivial example:

There are 2𝑛/2 stable 
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Rotation
A rotation is an ordered list of pairs:

𝜌 = 𝑚1, 𝑤1 , 𝑚2, 𝑤2 , … , 𝑚𝑘 , 𝑤𝑘

s.t., for all stable matchings 𝑀 where  𝜌 ⊆ 𝑀

• 𝑀′ = 𝑀 \ 𝜌 ∪ 𝑚1, 𝑤2 , 𝑚2, 𝑤3 , … (𝑚𝑘 , 𝑤1)
is stable.

• Each 𝑚𝑖 is worse off in 𝑀′ than in 𝑀, and each 
𝑤𝑖 is better off.

• [some technical points we don’t need] 
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To jump from stable matching to stable matching, some rotations must 
be eliminated before others. 

This induces a partial order on rotations:

𝜌1 ≺ 𝜌2 iff 𝜌1 must be eliminated before 𝜌2.

Nodes of the rotation POSET are rotations and 𝜌1 ← 𝜌2 if 𝜌1 ≺ 𝜌2.

Observation: All rotations with an agent form a directed path.



[Irving-Leather 86]

#Stable Matchings = #Downsets Rotation POSET

(𝑚1, 𝑤2),
(m4, w3)

(𝑚1, 𝑤1),
(𝑚2, 𝑤2)
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𝑤4 (𝑚3, 𝑤3),
(𝑚4, 𝑤4)

(𝑚2, 𝑤1),
(m3, w4)

(𝑚1, 𝑤3),
(m2, w4)

(𝑚3, 𝑤1),
(m4, w2)
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Each man and each woman have a path 𝑃𝑖 with all rotations containing 
that agent. 

There are 2𝑛 paths.

• These paths cover all rotations.

• They mix!

1) Every rotation contains a new (man, woman) pair.

2) We need at least 𝑟 men and or women to make 𝑟 new pairs. 
Thus 𝑟 rotations must intersect at least 𝑟 paths.

Rotation POSETs are 2𝑛-Mixing
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T(|V|) ≤  
2T(|𝑉| − 𝛼) if |𝑉| > 𝑘

2𝑘 if |𝑉| ≤ 𝑘

Main Lem: Every 𝑘-mixing poset (𝑉, ≺) with paths 𝑃1, 𝑃2, … , 𝑃𝑘 has a 

Ω(𝑑3/2)-critical element, where 𝑑 =
|𝑉|

𝑘
is ”average” length of a path.

Unfolding the recurrence leads to a geometric series.

Which gives 𝑇 |𝑉| ≤ 𝐶|𝑉|.

Critical Nodes ⇒ Main Theorem



𝑆1 𝑆2

Constructing Disjoint Subpaths

We construct a partition into 
subpaths 𝑆1, … , 𝑆𝑘 s.t.,

• Each 𝑆𝑖 ⊆ 𝑃𝑖.
• If a node 𝑣 dominates 𝑚 nodes 

in its subpath 𝑆𝑖 then it dominates 
𝑚 nodes in all 𝑆𝑗 where 𝑣 ∈ 𝑃𝑗.

𝑆3 𝑆4

𝑃1𝑃1



>
1

2
of nodes

Finding a half-Critical Node

Claim: Most nodes dominates Ω 𝑑3/2 nodes.

k-mixing: Every set 𝑈 intersects |𝑈| of paths 𝑃1, … , 𝑃𝑘

Partition: Define subpaths 𝑆1, 𝑆2, … , 𝑆𝑘 such that:
• Each 𝑆𝑖 ⊆ 𝑃𝑖.
• If 𝑣 dominates 𝑚 nodes in 𝑆𝑖 then 

it dominates 𝑚 nodes in all 𝑆𝑗 where 𝑣 ∈ 𝑃𝑗.
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Finding a half-Critical Node

𝑑

4
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Claim: Most nodes dominates Ω 𝑑3/2 nodes.
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𝑑

4
levels

Claim: Most nodes dominates Ω 𝑑3/2 nodes.

• Red node dominates 𝑑/4 green nodes

• Green nodes mix, so belong to Ω( 𝑑) paths.
• Every green node dominates at least 𝑑/4 in 

every path that it appears.

• The red node dominates Ω(𝑑3/2) blue nodes.

k-mixing: Every set 𝑈 intersects |𝑈| of paths 𝑃1, … , 𝑃𝑘

Partition: Define subpaths 𝑆1, 𝑆2, … , 𝑆𝑘 such that:
• Each 𝑆𝑖 ⊆ 𝑃𝑖.
• If 𝑣 dominates 𝑚 nodes in 𝑆𝑖 then 

it dominates 𝑚 nodes in all 𝑆𝑗 where 𝑣 ∈ 𝑃𝑗.

𝑆1 𝑆2 𝑆3 𝑆4 𝑆𝑘…





Existence of a Critical Node

Main Lem: Every 𝑘-mixing POSET with paths has a Ω(𝑑3/2)-critical 
element, where 𝑑 is ”average” length of a path.

Most nodes dominate Ω(𝑑3/2) nodes.

Most nodes are dominated by Ω(𝑑3/2) nodes.

Therefore, there is an Ω(𝑑3/2)-critical node.



Proof Summary
𝑘- mixing POSETs have 
Ω(𝑑3/2) critical nodes

𝑘-mixing POSETs have at 
most 𝐶𝑘 downsets

#downsets in rotation 
POSETs is at most 𝐶𝑛

#stable matchings is at most 𝐶𝑛

Rotation POSETs 
are 2n-mixing



• Getting close to the 2.28𝑛 lower bound?
• Our current bound is about 217𝑛

• Counting algorithms for estimating

• #Stable Matchings [Dyer-Goldberg-Greenhill-Jerrum’04,Chebolu-Goldberg-Martin’12]

• General case equivalent to 
• #Downsets of a POSET

• #Independent sets in bipartite graphs

Future directions
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Any questions?


