
Abstract

We discuss a class of graphs called “perfect graphs.” After defining them and
getting intuition with a few simple examples (and one less simple example), we present
a proof of the Weak Perfect Graph Theorem.

The presentation of the Weak Perfect Graph Theorem, especially the intuition for duplica-
tion, is based on Diestel’s presentation [1]. Historical notes and basic graph terminology
come from West’s textbook [5].

1 Perfect Graphs

A graph G is perfect if for every induced subgraph H of G, the chromatic number of H is
equal to the size of the largest clique of H.

Let’s fix some notation: χ(G) is the chromatic number of G, ω(G) is the size of the largest
clique of G, and α(G) is the size of the largest independent set of G. In our new notation, a
graph is perfect if for every induced subgraph H: χ(H) = ω(H). We use the notation NG(S)
to mean the neighbors of a set of vertices S in the graph G. When G is clear from context
we omit the subscript. The complement of G is another graph G on the same vertex set; for
every pair of vertices {u, v}, (u, v) is an edge of G if and only if it is not an edge of G.

Why are perfect graphs interesting? A clique of size k+ 1 is an easy certificate that a graph
is not k-colorable, thus these graphs are exactly the graphs such that, as we color, we will
always have a certificate that our coloring is optimal for the portion of the graph we have
colored so far. We will see in the next talk that these graphs also have a nice characterization
in terms of polytopes.

One could also view this class of graphs as an analog of bipartite graphs and Kőnig’s Theorem.
In general, the sizes maximum matchings and minimum vertex covers may differ, but Kőnig’s
Theorem says in bipartite graphs they coincide. By definition, perfect graphs are the graphs
such that for every induced subgraph, the minimum number of colors in a proper coloring
and the maximum size of a clique coincide. It turns out perfect graphs (and the weak perfect
graph theorem) unify a lot of min-max results from early graph theory. There is a discussion
of some of these results in one of Schrijver’s textbooks [4]; we won’t have time to discuss
those results here.

To get some intuition for this class of graphs, let’s classify some of our favorite graphs by
whether they are perfect or not.
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1.1 Some Perfect Graphs

Some classes of perfect graphs:

1. Kn (every induced subgraph is a k-clique and k-colorable.)

2. bipartite graphs (somewhat trivially)

3. cobipartite graphs, i.e. graphs G such that G is bipartite. (Corollary of Lemma 2)

Let’s prove that last class of graphs is actually perfect. We need two tools to get there. The
first is a simple relationship between colorings and cliques.

Lemma 1. Let G be a graph, if G contains a clique of size k and a valid coloring using k
colors, then ω(G) = χ(G) = k

Proof. By finding a valid coloring and a clique of size k we have χ(G) ≤ k and ω(G) ≥ k
but we always have ω(G) ≤ χ(G) (as we must use a new color for each vertex in the largest
clique). Combining these inequalities gives k ≤ ω(G) ≤ χ(G) ≤ k.

The second tool in showing cobipartite graphs are perfect is Hall’s Condition for the existence
of matchings in bipartite graphs. We say a matching “saturates” a set of vertices if every
vertex in that set has an incident edge in the matching.

Theorem 1 (Hall’s Condition). Let G be a bipartite graph with partite sets S, T . There is
a matching saturating S if and only if for all S ′ ⊆ S, |N(S ′)| ≥ |S ′|.

For a subset S ′ ⊆ S, we define the deficiency of S ′ to be |S ′| − |N(S ′)|. A set has positive
deficiency if and only if it violates Hall’s Condition.

With our new definition and facts in hand we can move to proving that cobipartite graphs
are perfect.

Lemma 2. Every cobipartite graph G satisfies χ(G) = ω(G).

Proof. Let S, T be a bipartition of G, where |S| ≥ |T |. We consider two cases:

Case 1: There is a matching saturating T in G.
In G, S forms a clique. Coloring G with |S| colors will complete the argument (by Lemma
1). Give a distinct color to every element of S, arbitrarily pick a matching of G saturating
T , and give t ∈ T the color of its matched partner in S. By definition of complement, this
is a valid coloring.
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Figure 1: A sample G, with extremal T ′. The vertices of U are shown in red, and the
matching of G used to create the coloring is in bold.

Case 2: No matching saturates T in G.
By Hall’s Condition, there is a set T ′ ⊆ T such that NG(T ′) is smaller than T ′. Choose
T ′ to have the maximum deficiency (in G) among all such subsets. Now consider U =
(S\NG(T ′)) ∪ T ′. Note that U forms a clique in G (there are no edges in G among these
edges by the bipartition and the fact that we removed NG(T ′)). See Figure 1. As before, it
suffices to color G with |U | colors. Assign a distinct color to each element of U . We claim
there is a matching in G between U ∩S and T\T ′, saturating T\T ′; if there were not, Hall’s
condition would give us another set T ′′ with positive deficiency, but then T ′∪T ′′ would violate
the extremality of T ′. We color T\T ′ the same as its partner in the matching. Similarly, we
can find a matching in G between T ′ and S\U saturating S\U . Indeed, if there were not
such a matching then there would be a set S ′ ⊆ NG(T ′) such that |S ′| > |NG(S ′)|. But now
T ′\NG(S ′) has neighborhood of size at least |NG(T ′)\S ′|, which would force T ′\NG(S ′) to
have a larger deficiency than T ′, a contradiction. It is easy to check our coloring is valid –
we use each color at most twice, and when we repeat a color it is assigned to a partner in a
matching in G, thus no edge in G is monochromatic, and χ(G) = ω(G), as required.
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1.2 Some Imperfect Graphs

Not all graphs are perfect. Here are some Non-examples:

1. C2k+1(k ≥ 2) (which are not 2-colorable, but have no K3).

2. C2k+1(k ≥ 2). (The complement of a clique is an independent set. The largest inde-
pendent set in C2k+1 is size k; the complement of a coloring is a partition into cliques,
the only cliques in cycles are edges, so we require k + 1 colors.)

2 The Weak Perfect Graph Theorem

You might have noticed a pattern: when a graph is perfect, so is its complement (and
conversely). This is not a coincidence, in fact it’s the Weak Perfect Graph Theorem.

Theorem 2 (Weak Perfect Graph Theorem [3]). G is perfect if and only if G is perfect.

The Weak Perfect Graph Theorem was first conjectured by Berge in 1960. By 1972, it
was a well-known conjecture. In the same year that Lovasz resolved the conjecture in the
affirmative, he produced a second proof, using different techniques that was simpler than
the original [2].

Our first step is a strange-seeming Lemma about “duplicating” vertices. We say we duplicate
a vertex x, by creating a new vertex x′ such that N(x′) = N(x)∪{x}. We will call x′ a copy
of x. It turns out this operation preserves perfection:

Lemma 3. If G is perfect and G′ arises from G by duplicating a vertex, then G′ is also
perfect.

Proof. We proceed by induction on the number of vertices in G. Our base case is trivial (a
single vertex duplicates to an edge, both of which are complete graphs, and thus perfect).
Now let G be a perfect graph and let G′ arise from G by duplicating a vertex x, adding
the vertex x′. We only need concern ourselves with whether χ(G′) = ω(G′) – consider a
proper induced subgraph H: if H contains at most one of x, x′ it is isomorphic to an induced
subgraph of G and its perfection follows from that of G. On the other hand, if H contains
both x, x′ but is a proper subgraph, it can be handled by the inductive hypothesis, so only
G′ itself remains. If ω(G′) = ω(G) + 1, then we can take a coloring of G make x′ a new
color and be done by Lemma 1. Thus suppose ω(G′) = ω(G). We again color G′ with ω(G′)
colors. Fix an optimal coloring of G. In this coloring, let x be colored blue and let X be the
class of blue nodes. By the equality ω(G′) = ω(G), we know that x does not participate in
any maximum cliques (otherwise adding x′ to the clique would create one of size ω(G) + 1).
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Now consider the graph H := G\(X − x) i.e. G with all the blue nodes except x removed.
Now any ω(G)-sized clique in G must contain a blue vertex (to be validly-colored), but this
vertex cannot be x by our previous observation, thus ω(H) < ω(G). Now by perfection of G
we have χ(H) = ω(H). Fix such a coloring. We now color G′ by taking this coloring of H
and adding X ∪ {x′} as a single (new) color class. This gives an ω(H) + 1 ≤ ω(G) = ω(G′)
coloring of G′, which completes our proof.

We can now turn to the proof of the Weak Perfect Graph Theorem.

Proof of Theorem 2. We again proceed by induction on the number of vertices in G. Our
base case, K1, is isomorphic to K1, so both are perfect. Now consider a perfect graph G (with
at least 2 vertices). Let K be the set of all vertex sets underlying cliques of G. Let A be the
set of all maximum independent sets of G. Note the lack of symmetry in these definitions:
K contains all cliques, A contains only the maximum independent sets. By IH, we need only
consider whether χ(G) = ω(G). It suffices to prove χ(G) ≤ ω(G). Our approach is to find a
set K ∈ K such that K ∩ A 6= ∅ for all A ∈ A. In this situation, we observe that removing
K from G reduces the clique number:

ω(G−K) = α(G−K) < α(G) = ω(G)

Then we have:
χ(G) ≤ χ(G−K) + 1 = ω(G−K) + 1 ≤ ω(G)

Where the first inequality follows from coloring G using the coloring for G−K, the equality
is from IH, and the second inequality is due to every maximum independent set of G (i.e.
every maximum clique of G) intersecting K.

Thus it suffices to prove that such a K exists in every perfect graph. Suppose it does not,
that is for every K ∈ K there is an AK ∈ A such that K ∩ AK = ∅.

Our goal in deriving a contradiction will be to find a subgraph G̃ whose chromatic number is
larger than its clique number, but the only real way we have to lower-bound the chromatic
number is by |G̃|/α(G̃) for the subgraph G̃ we choose. In general this bound isn’t very tight,
but perhaps we can use some extra structure to tighten it. In particular, suppose that the
AK we just defined were mutually disjoint. Indeed, if G̃ is just G [∪K∈KAK ] then in this
case |G̃| = α(G) · |K| (Every AK has size α(G), and we just assumed they are disjoint). We
would also have χ(G̃) = |K| (we can color by giving each AK a distinct color, since the AK

are maximum independent sets of G [and thus G̃], we can do no better). Thus if the AK are
disjoint, our bound on χ(G̃) will be tight, and we might have hope. What do we do when
they are not disjoint? Make them disjoint! Duplicate each repeated vertex so that a distinct
copy appears in exactly one AK . As long as this duplication doesn’t change K,A, or the
perfection of G in the wrong way, we will be fine. Lemma 3 allows us to do exactly this.
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Formally, for every vertex x ∈ G, replace x with a clique on |{K ∈ K|x ∈ AK}| vertices. Let
G′ be the resulting graph. Note that this process can be achieved via repeated duplication1,
so by Lemma 3, G′ is also perfect. Since every K ∈ K duplicated a vertex for every x ∈ AK ,
G′ has |K|α(G) vertices. By perfection of G′ we have χ(G′) = ω(G′).

We calculate χ(G′), ω(G′) in the hope of deriving a contradiction. By construction, any
maximal clique in G′ consists of all duplicated vertices arising from some X ∈ K. Now the
size of this clique in G′ is exactly the number of times we duplicated each of the vertices in
X, i.e. |{(x,K) : K ∈ K, x ∈ X, x ∈ AK}|. This expression is equal to

∑
K∈K |X ∩ AK |. X

is a clique of G while each AK is an independent set of G, so they intersect in at most one
vertex each. Moreover, X ∩ AX = ∅, so we have that this set is of size at most |K| − 1.

Now let’s try to bound χ(G′). The only good way we have to bound it is to use the fact that
χ(G′) ≥ |G′|/α(G′) (because every color class is an independent set). Let us try to bound
the chromatic number this way. Again by definition of the graph

|G′| = |{(x,K) : x ∈ V (G), K ∈ K, x ∈ AK}| =
∑
K∈K

|AK | = α(G)|K|

We have α(G′) ≤ α(G) (a vertex and its copy cannot be in an independent set in G′, on the
other hand, we might have deleted a vertex when creating G′). Thus

χ(G′) ≥ |G′|
α(G′)

≥ |G
′|

α(G)
= |K|

Now we have χ(G′) ≥ |K| > |K| − 1 ≥ ω(G′), which contradicts the perfection of G′. Thus
there is always a K ∈ K such that K intersects each A ∈ A, and our previous argument
guarantees perfection of G.
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1One might be concerned that some vertex, v, might not appear in any AK . In this case, do not duplicate
v, and then let G′ be the induced subgraph on the duplicated vertices, excluding any such v. This graph is
still perfect, as it is an induced subgraph of a perfect graph.
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