
c©Copyright 2020

Robbie Weber

Pairing Things Off: Counting Stable Matchings, Finding Your

Ride, and Designing Tournaments

Robbie Weber

A dissertation
submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington

2020

Reading Committee:

Anna R. Karlin, Chair

Shayan Oveis Gharan, Chair

Dan Grossman

Program Authorized to Offer Degree:
Computer Science & Engineering

University of Washington

Abstract

Pairing Things Off: Counting Stable Matchings, Finding Your Ride, and Designing
Tournaments

Robbie Weber

Co-Chairs of the Supervisory Committee:

Professor Anna R. Karlin

Paul G. Allen School of Computer Science & Engineering

Assistant Professor Shayan Oveis Gharan

Paul G. Allen School of Computer Science & Engineering

This thesis discusses three problems around the common theme of pairing off agents. While

the techniques vary, in each problem we observe that careful application of classical and

well-understood techniques can still lead to progress.

In Chapter Two, we study the classical combinatorial problem of stable matchings. Stable

matchings were introduced in 1962 in a seminal paper by Gale and Shapley. In this chapter,

we provide a new upper bound on f(n), the maximum number of stable matchings that an

instance with n men and n women can have. The best lower bound prior to our work was

approximately 2.28n, and the best upper bound was 2n logn−O(n). We show that for all n,

f(n) ≤ cn for some universal constant c. Our bound matches the lower bound up to the base

of the exponent.

In Chapter Three, we discuss online matching. The Min-Cost Perfect Matching with

Delays Problem (MPMD) has been the subject of a recent flurry of activity in algorithm

design. In the problem, a series of requests appear over time in a metric space, with the

locations and timing determined by an adversary. The algorithm designer is charged with

pairing off all the requests, attempting to minimize the sum of the amount of time the

requests have to wait (between appearance and being matched) and the distances between

the matched requests.

We discuss our initial work on the problem, which shows that if the requests come from

an unknown probability distribution (rather than from an adversary) a simple algorithm

(that we call “ball growing”) achieves excellent performance. We also adapt the core idea of

the algorithm to the adversarial case, and show that a slight modification of the same simple

idea suffices to match the best-known algorithms for MPMD.

In Chapter Four, we discuss a different type of matching – creating matchups in sports

tournaments. Our work is inspired by an incident in the 2012 Olympic Badminton tour-

nament where both teams playing in a match were incentivized to lose that match (and

attempted to do so). In 2016, the tournament was redesigned, with the stated goal of elim-

inating misaligned incentives; we show the redesign failed in this goal. We then describe

a minimally-manipulable tournament rule which could be reasonably implemented, while

maintaining many of the subtler features of the current tournament that a designer would

want.

TABLE OF CONTENTS

Page

List of Figures . iii

Chapter 1: Introduction . 1

1.1 Counting Stable Matchings . 1

1.2 Online Matching . 3

1.3 Tournament Design . 5

Chapter 2: A Simply Exponential Upper Bound on the Maximum Number of Stable
Matchings . 7

2.1 Introduction . 7

2.2 Preliminaries and main technical theorem . 11

2.3 Proof of main technical theorem . 14

2.4 Rotations and the rotation poset . 17

2.5 Conclusion . 21

Chapter 3: Online Matching . 23

3.1 Introduction . 23

3.2 Intuition via Examples . 25

3.3 Randomized MPMD algorithms . 28

3.4 Deterministic MPMD Algorithms . 34

3.5 Extensions of MPMD . 38

3.6 Our Initial Work – Stochastic Setting . 41

3.7 Our Initial Work – Adversarial Setting . 45

3.8 Open Problems . 56

Chapter 4: Tournament Design: Creating Good Matchups in Sports 59

4.1 Introduction . 59

i

4.2 2012 Badminton Incident and Olympics Response 65

4.3 Double-Elimination Design . 70

4.4 Conclusion . 79

Chapter 5: Conclusion . 81

Bibliography . 83

ii

LIST OF FIGURES

Figure Number Page

1.1 A stable matching instance with two possible stable matchings. 2

2.1 A 2n-mixing poset . 13

2.2 A stable matching instance and the corresponding rotation poset 20

3.1 A bad example for greedy algorithms . 26

3.2 A greedy algorithm failing on the difficult instance 27

3.3 A bad example for “jumpy” algorithms . 29

3.4 The linear program introduced by Bienkowski, Kraska, Liu, and Schmidt. . . 38

4.1 The 2012 Olympics Incident . 66

4.2 The knockout seeding for 2016 and 2012. 67

4.3 A 4-team double elimination tournament . 71

iii

ACKNOWLEDGMENTS

This dissertation would not exist without both of my advisors. Shayan: thank you for

your constant enthusiasm, for always pushing for stronger and better results, and for thinking

about the big picture. Anna: thank you for your consistent patience, for keeping me on track

when I needed it, and for always working out step one with me while Shayan worked on step

three.

I am incredibly lucky that I have been able to mix teaching and research during my Ph.D.

I am indebted to my advisors for letting me balance those two goals and to Dan Grossman

for giving me a chance to teach. Our entire group of teaching faculty has been incredibly

generous in mentoring me. Particular thanks go to Ruth Anderson and Lauren Bricker, for

their advice on my trickiest teaching issues. To Brett Wortzman and Hunter Schafer, for

making me feel included and welcome. And to Kasey Champion for her unmatched modeling

of ‘hustle’ and prowess with powerpoint animations.

I would not have gotten though my Ph.D. without the support of my fellow students at

UW. My thanks go in particular to Kira Goldner for giving me pep talks when I needed

them most (and glares when I needed those most). To Jennifer Brennan, whose work ethic

is inspiring. To John Thickstun, for being a sounding board and always finding the point in

a complicated argument. To Swati Padmanabhan, for all of our coffee breaks and walk-and-

talks. And to Sami Davies, Anna Kornfield Simpson, Leah Perlmutter, Christine Chen, and

countless others for finding the time for practice talks and hallway conversations.

Finally, thanks to my family: my parents for always being there to listen, and to Kristi

for ensuring our email correspondence was always at least weekly.

iv

1

Chapter 1

INTRODUCTION

This thesis discusses three problems of pairing agents. In Chapter 2, we show that a

stable matching instance with n agents on each side can have at most cn stable matchings

(where c is a universal constant). Chapter 2 is based on a paper with Anna Karlin and

Shayan Oveis Gharan that appeared in STOC 2018 [KOGW18].

In Chapter 3, we discuss a simple idea for solving online matching problems. We show that

algorithms based on this idea can achieve excellent performance when requests are stochastic,

and can match the best-known algorithms when requests are adversarial. Chapter 3 is based

on a manuscript written with Anna Karlin, Shayan Oveis Gharan, and Alireza Rezaei.

In Chapter 4, we design a practical and approximately strategy-proof tournament for

use in competitions like Olympic Badminton (which have experienced teams manipulating

match results). Our tournaments match strategy-proofness results already in the literature

while maintaining practical benefits that other tournaments have lacked. Chapter 4 is based

on a manuscript written with Nick Liu, Jainul Vaghasia, and Sierra Wang.

1.1 Counting Stable Matchings

A stable matching instance is formed by two sets of n agents (commonly referred to as

“men” and “women”), with each agent holding a preference list ordering (all of) the agents

in the other set. A stable matching pairs each man to exactly one woman, such that there

is no blocking pair. A blocking pair is a man-woman pair (m,w) where m and w are not

matched to each other, m would rather be with w than his partner, and w would rather be

with m than her partner. Gale and Shapley’s paper introducing stable matchings contains

two surprising facts about this problem: regardless of the preference lists, a stable matching

2

Figure 1.1: A stable matching instance with two possible stable matchings. The blue match-

ing is stable because the men both have their first choices. The green matching is stable

because the women both have their first choices.

always exists; and for some sets of preference lists more than one stable matching can exist.

See Figure 1.1.

Once one realizes that the number of stable matchings can vary, it is a very natural

question to ask how quickly the number of stable matchings can grow. The question has

appeared in short lists of open problems on stable matchings created by Knuth [Knu76] and

Gusfield and Irving [GI89].

We study the asymptotics of f(n), the maximum number of stable matchings in an

instance with n agents on each side of the matching. For intuition, we recall the well-known

fact that f(n) ≥ 2n/2. The instance consists of n/2 independent copies of the instance in

Figure 1.1. That is, men 2i+ 1, 2i+ 2 and women 2i+ 1, 2i+ 2 have each other as their top

choices (where the rankings in Figure 1.1 correspond to i = 1), and arbitrary lists thereafter.

Observe that for each i, we can choose either the green matching or the blue matching,

and there are no blocking pairs between the sub-instances. Thus we have 2n/2 matchings as

claimed.

1.1.1 Tools

Our main tool in this chapter is the “rotation poset,” an object first described by Irving

and Leather [IL86]. The rotation poset provides a succinct description of the set of stable

3

matchings. One can describe a set of polynomially-many “rotations” (intuitively, short

descriptions of exchanges of partners that make one side slightly better-off at the expense of

the other). It turns out these rotations are partially ordered, giving extra structure to the

set.

1.1.2 Our Contribution

We introduce the notion of a “mixing poset.” It turns out that rotation posets can be decom-

posed into a small set of paths, such that these paths must intersect each other frequently.

The notion of “mixing” is novel, though the proof that rotation posets have the mixing

property is simply a combination of well-established observations about those posets.

It turns out that mixing posets always have an element that is somewhat “central” (that

is one which both dominates and is dominated-by a large fraction of the elements). Using

basic combinatorics, we can guarantee the existence of this central element. That central

element can be used to build a recurrence, and thus a new bound on the number of stable

matchings.

Specifically, we show in Theorem 2.1.1 that f(n) ≤ cn for some constant c. Since there

are lower bounds of the form f(n) ≥ c′n for other constants c′, we now know that f(n) grows

as 2Θ(n).

1.2 Online Matching

The Min-Cost Perfect Matching with Delays Problem has become a very popular subject

of study in the online algorithms community. Inspired by ridesharing platforms, like Lyft

and Uber, the problem asks the algorithm designer to pair requests appearing over time in

a metric space. An algorithm matches requests irrevocably (i.e. once requests are paired

off, they are permanently matched). The quality of a matching is the sum (over all matched

pairs) of the distance between the paired requests and the time all requests had to wait to

be matched.

Algorithms are evaluated using competitive analysis. The “competitive ratio” of an

4

algorithm is the worst possible ratio between the cost of the algorithm, and the cost of the

best possible matching (i.e., one made with total foresight). The best-known competitive

ratio for MPMD algorithms is O(log n), shown by Azar, Chiplunkar, and Kaplan [ACK17].

We also discuss a stochastic version of the problem, where requests are drawn from a

probability distribution (rather than being chosen by an adversary).

1.2.1 Tools

There are two main threads in prior work on MPMD: one studying randomized algorithms,

the other deterministic ones. Randomized algorithms frequently make use of “hierarchically

separated trees (HSTs).” These trees are methods of approximating arbitrary discrete metric

spaces (like those where our requests appear) with tree metrics. Embedding into HSTs alters

the metric, which may increase error. However, the tree metric is much more structured than

an arbitrary metric space. This simpler space lets us design better algorithms, compensating

for the distortion between the original metric space and the one we optimize for.

Critical to the HST approach is that creating the HST is a random process, where the

adversary cannot see the exact result.1

1.2.2 Our Contributions

We make two contributions. The first is to discuss randomized MPMD algorithms through

the lens of “ball-growing.” Our new algorithms, and multiple prior algorithms in the litera-

ture can be viewed through this lens, and we emphasize this common thread. We think of

every request steadily growing a “ball” around it (encompassing more of the metric space).

Matching rules can then be phrased in terms of balls intersecting. This perspective naturally

shows the goals of the algorithms – balancing the distance between points and the waiting

time they are forced to incur. Our “odd-ball-growing” algorithm matches the best-known

1When embedding into the HST, the distances between some pairs are “distorted” more than others. If
the adversary knew which pairs were most distorted, they could exploit the algorithm treating those pairs
as more distant than they actually are.

5

behavior of existing algorithms for MPMD2. Compare Theorem 3.3.3 and Theorem 3.7.1.

We also show the versatility of the “ball-growing” perspective, by analyzing it in the

stochastic case. We introduce a simple stochastic setting for MPMD, where the requests are

drawn from probability distributions instead of chosen by an adversary. In this case a simpli-

fied version of the ball-growing approach achieves excellent performance: the expectation of

our algorithm’s cost differs from the optimal by only a constant factor (see Theorem 3.6.4).

1.3 Tournament Design

Chapter 4 discusses a real-world use of creating pairings – designing (sports) tournaments.

Our work is inspired primarily by the 2012 Olympic Badminton tournament. In that tourna-

ment, a quirk of the design (and an upset in an early round) produced a match where both

teams were better-off losing the match they were playing than winning it.3 The incident gen-

erated significant discussion as to whether the attempt to lose was unethical (see references

in section 4.1). Regardless, it became clear that the tournament needed to be redesigned so

as to not incentivize competitors to lose. It is not hard to design such a tournament, a tra-

ditional “single-elimination bracket” (pair teams to play a match, eliminate losers, recurse)

would suffice.

The design is simple, and known to the designers of the Olympic tournament4, yet by the

following Olympics, they had instead tweaked the two-phase design they previously used.

The decision to maintain the two phases shows they were trying to maintain other features

of the tournament (besides attempting to restore teams’ desire to win). As an example, the

2012 design ensures every team will play at least three matches, which is not matched by

the single-elimination tournament.

2up to constant factors

3“Better-off” in the sense of increasing their chances of becoming champion.

4their 2012 tournament contains two phases; phase two is a single-elimination bracket

6

1.3.1 Tools

While prior work on tournament design has occasionally found use for heavy machinery, the

majority of work on these problems use only fundamental probability theory and combina-

torics (though often with clever arguments). Our arguments end up requiring only these

fundamentals.

1.3.2 Our Contribution

We design a tournament which is provably “monotone” (that is, ensuring no team ever wants

to lose a match), while also ensuring that every team is allowed to play two meaningful

matches. Our design is closely based on one used in real-world tournaments, but it gives

surprising insight into the monotonicity of tournaments. Prior to our tournament, the only

proofs of monotonicity have followed straight from the definition of the tournament. While

our proof is not difficult, it is the only non-trivial one we know of. Second, we show that

common-in-practice modifications of our tournament (even naively increasing the number of

participants) will break monotonicity, thus showing significant care must be taken in using

these tournaments in practice.

7

Chapter 2

A SIMPLY EXPONENTIAL UPPER BOUND ON THE
MAXIMUM NUMBER OF STABLE MATCHINGS

2.1 Introduction

Stable matching is a classical combinatorial problem that has been the subject of intense

theoretical and empirical study since its introduction in a seminal paper by Gale and Shapley

in 1962 [GS62]. Variants of the algorithm introduced in [GS62] are widely used in practice,

for example to match medical residents to hospitals. Stable matching is even the focus of

the 2012 Nobel Prize in Economics [Ram12].

A stable matching instance with n men and n women is defined by a set of preference lists,

one per person. Person i’s preference list gives a ranking over the members of the opposite

sex. The Stable Matching Problem is to find a matching (i.e., a bijection) between the men

and the women that is stable, that is, has no blocking pairs. A man m and a woman w form a

blocking pair in a matching if they are not matched to each other, but both prefer the other

to their partner in the matching. Gale and Shapley [GS62] showed that a stable matching

always exists and gave an efficient algorithm to find one.1 Since at least one stable matching

always exists, a natural question is to determine the maximum number of stable matchings

an instance of a given size can have. This problem was posed in the 1970s in a monograph

by Knuth [Knu76], and was the first of Gusfield and Irving’s twelve open problems in their

1989 textbook [GI89]. We denote the maximum number of stable matchings an instance

with n men and n women can have by f(n).

Progress on determining the asymptotics of f(n) has been somewhat slow. The best lower

1Stable matching algorithms were actually developed and used as early as 1951 to match interns to
hospitals [Sta53].

8

bound is approximately 2.28n, and the best upper bound prior to this paper was 2n logn−O(n).

See the related work section for a detailed history.

In this chapter, we present an improved upper bound.

Theorem 2.1.1. There is a universal constant c such that f(n), the number of stable match-

ings in an instance with n men and n women, is at most cn.

To prove this theorem, we use a result of Irving and Leather [IL86] that shows that there

is a bijection between the stable matchings of an instance I and the downsets2 of a particular

partially-ordered set (poset) associated with I known as the rotation poset. We show that

the rotation poset associated with a stable matching instance has a particular property that

we call n-mixing, and that any poset with this property has at most cn downsets. All the

steps in our proof are elementary.

The bound extends trivially to stable roommates instances. In the stable roommates

problem, a set of n agents rank the other n − 1 agents in the set. The agents are paired

off into roommate pairs, which are stable if no two agents would like to leave their partners

and be matched to each other. A construction of Dean and Munshi [DM10], demonstrates

that a stable roommates instance with n agents can be converted into a stable matching

instance with n men and n women, such that the stable roommate assignments correspond

to a subset of the stable matchings in the new instance. Using this construction, we can

apply our upper bound to Stable Roommates.

Theorem 2.1.2. There is a universal constant c, such that the number of stable assignments

in a stable roommate instance with n agents is at most cn.

2See section 2.2 for definitions of all the relevant terminology.

9

2.1.1 Related Work

Lower Bounds

It is trivial to provide instances with 2n/2 stable matchings by combining disjoint instances

of size 2 (see section 1.1). Irving and Leather constructed a family of instances [IL86]

which has since been shown by Knuth3 to contain at least Ω(2.28n) matchings. Irving and

Leather’s family only has instances for n which is a power of 2. Benjamin, Converse, and

Krieger also provided a lower bound on f(n) by creating a family of instances with Ω(2n
√
n)

matchings [BCK95]. While this is fewer matchings than the instances in [IL86], Benjamin et

al.’s family has instances for every even n, not just powers of 2. In 2002, Thurber extended

Irving and Leather’s lower bound to all values of n. For n powers of 2, Thurber’s construction

exactly coincides with Irving and Leather’s. For all other n, the construction produces a lower

bound of 2.28n/clogn for some constant c [Thu02]. To date, this lower bound of Ω(2.28n) is

the best known. We refer the reader to Manlove’s textbook for a more thorough description

of the history of these lower bounds [Man13].

Upper Bounds

Trivially, there are at most n! stable matchings (as there are at most n! bijections between

the men and women). The first progress on upper bounds that we are aware of was made by

Stathoupolos in his 2011 Master’s thesis [Sta11], where he proves that the number of stable

matchings is at most O(n!/cn) for some constant c. A more recent paper of Drgas-Burchardt

and Świtalski shows a weaker upper bound of approximately 3
4
n! [DBŚ13]. All previous

upper bounds have the form 2n logn−O(n).

Restricted Preferences

The number of possible stable matchings has also been studied under various models re-

stricting or randomizing the allowable preference lists. If all preference lists are equally

3Personal communication, as described in [GI89].

10

likely and selected independently for each agent, Pittel shows that the expected number of

stable matchings is O(n log n) [Pit89]. Applying Markov’s Inequality shows that the num-

ber of stable matchings is polynomial in n with probability 1 − o(1). Therefore, the lower

bound instances described above are a vanishingly small fraction of all instances. Work of

Hoffman, Levy, and Mossel (described in Levy’s PhD thesis [Lev17]) shows that under a Mal-

lows model [Mal57], where preference lists are selected with probability proportional to the

number of inversions in the list, the number of stable matchings is Cn with high probability

(where the constant C depends on the exact parameters of the model).

The number of attainable partners4 a person can have has also been the subject of much

research. Knuth, Motwani, and Pittel show that the number of attainable partners isO(log n)

with high probability if the lists are uniformly random [KMP90]. Immorlica and Mahdian

show that if agents on one side of the instance have random preference lists of length k (and

consider all other agents unacceptable) the expected number of agents with more than one

attainable partner depends only on k (and not on n) [IM05]. Ashlagi, Kanoria, and Leshno

show that if the number of men and women is unbalanced, with uniformly random lists, the

fraction of agents with more than one attainable partner goes to 0 as the size of the market

grows [AKL17]. Intuitively, the advantage to being on the proposing side “disappears” when

the market becomes unbalanced (and sufficiently large). Follow-up work of Pittel finds the

expected number of stable matchings in this setting and related results [Pit17a].

Various related questions have been examined for alternative notions of stability and in

the stable roommates setting. See [Pit17b, Pit17c] and references therein.

Counting

A natural computational problem is to count the number of stable matchings in a given

instance as efficiently as possible. Irving and Leather show that finding the exact number of

matchings is #P -complete [IL86], so finding an approximate count is a more realistic goal.

4 Woman w is an attainable partner of man m if there is a stable matching in which they are matched
to each other.

11

Bhatnagar, Greenberg, and Randall consider instances where preference lists come from

restricted models [BGR08]; for example, those in which the preference lists reflect linear

combinations of k “attributes” of the other set, or where every agent appears in a “range”

of k consecutive positions in every preference list. In both of these cases, they show that a

natural Markov Chain Monte Carlo approach does not produce a good approximation (as

the chain does not mix efficiently). As part of their proof, they show the number of stable

matchings can still be as large as cn for some constant c < 2.28, even in these restricted

cases.

A formal hardness result was later shown by Dyer, Goldberg, Greenhill, and Jerrum

[DGGJ04]. They show approximately counting the number of stable matchings is equivalent

to approximately counting for a class of problems, canonically represented by #BIS.5 This

hardness result was strengthened by Chebolu, Goldberg, and Martin [CGM12] to hold even

if the instances come from some of the restricted classes of [BGR08].

The heart of all of these results is the rotation poset (originally developed in [IL86]),

which we use and describe in section 2.4.

Stable Matching in General

We refer the reader to books by Roth and Sotomayor [RS92], Gusfield and Irving [GI89],

Manlove [Man13], and Knuth [Knu97] for more about the topic of stable matching. For

many examples of stable matching in the real world, see [Rot15].

2.2 Preliminaries and main technical theorem

In this section, we review standard terminology regarding partially ordered sets, describe the

key property of a poset we will use, and state our main technical theorem (Theorem 2.2.5).

5More specifically, they show an FPRAS for the number of stable matchings exists if and only if one
exists for #BIS, approximately counting the number of independent sets in a bipartite graph. Goldberg
and Jerrum conjecture that no such FPRAS exists [GJ12]. See [CGM12] for formal definitions.

12

Definition 2.2.1 (Poset). A partially ordered set (or poset) (V,≺), is defined by a set V

and a binary relation, ≺, on V satisfying:

• Antisymmetry: For all distinct u, v ∈ V if u ≺ v then v 6≺ u, and

• Transitivity: for all u, v, w ∈ V if u ≺ v and v ≺ w then u ≺ w.

Two elements u, v ∈ V are comparable if u ≺ v or v ≺ u. They are incomparable otherwise.

If u ≺ v, we say u is dominated by v and v dominates u.

Definition 2.2.2 (Chain). A set S of elements is called a chain if each pair of elements in

S is comparable. In other words, for ` > 0, a chain of length ` is a sequence of elements

v1 ≺ v2 ≺ v3 ≺ · · · ≺ v`.

A set of elements is called an antichain if they are pairwise incomparable.

Definition 2.2.3 (Downset). A downset of a partial order is an antichain and all elements

dominated by some element of that antichain.

Observe that a downset is closed under ≺. That is, for any downset S, if v ∈ S and u ≺ v

then u ∈ S.

The following is the key property of the posets associated with stable matching instances

that we will use in the proof.

Definition 2.2.4 (n-mixing). A poset (V,≺) is n-mixing if there exist n chains C1, . . . , Cn

(not necessarily disjoint) such that

i) Every element of V belongs to at least one of the chains,

i.e., ∪ni=1Ci = V ,

ii) For any U ⊆ V , at least 2
√
|U | of the Ci contain an element of U .

13

n
n

Figure 2.1: A 2n-mixing poset with respect to chains defined by the red and blue paths.

A path in the graph from v to u indicates that u ≺ v. That is, the poset is the transitive

closure of the arrows shown. For any set U of k elements, there are at least 2
√
k chains that

contain one of these elements.

14

Observe that if a poset is formed by n disjoint chains, each of length `, it has about `n

downsets, and ` could be arbitrarily bigger than n. But such a poset is not mixing, since

taking U to be the set of elements on one of the chains violates property ii) of mixing. For

an example of a mixing poset, see Figure 2.1. We can now state our main technical theorem.

Theorem 2.2.5. There is a universal constant c, such that if a poset is n-mixing, then it

has at most cn downsets.

Note that the n-mixing property immediately implies that the poset has at most n2

elements; just let U = V in the above definition. A poset with n2 elements covered by n

chains can have at most (n + 1)n downsets (this is achieved for n equal length chains). So,

the main contribution of the above theorem is to improve this trivial upper bound to cn for

some constant c.

Theorem 2.2.5 is the main technical contribution of this work. The proof is contained in

section 2.3. To complete the proof of Theorem 2.1.1 we use the following theorem relating

mixing posets to stable matchings.

Theorem 2.2.6. For every stable matching instance I with a total of n men and women,

there exists an n-mixing poset (R,≺), called the rotation poset, such that the number of

downsets of the poset is equal to the number of stable matchings of I.

Note that Theorem 2.2.5 and Theorem 2.2.6 immediately imply Theorem 2.1.1. We prove

Theorem 2.2.6 in section 2.4, by combining existing observations about the rotation poset.

2.3 Proof of main technical theorem

In this section we prove Theorem 2.2.5. The proof proceeds by finding an element v of the

poset which dominates and is dominated by many elements. We then count downsets by

considering those downsets that contain v and those that do not. Since v dominates and

is dominated by many elements, the size of each remaining instance is significantly smaller,

yielding the bound.

15

Formally, we say an element is α-critical if it dominates α elements and is dominated by

α elements. The key lemma is that there is always an Ω((|V |/n)3/2)-critical element.

Lemma 2.3.1. Let (V,≺) be an n-mixing poset with respect to chains C1, . . . , Cn, and define

d = |V |
n

. For some universal constants d0 > 1 and c0 > 0, there is an element v ∈ V such

that v is (c0d
3/2)-critical as long as d ≥ d0.

We prove Lemma 2.3.1 in subsection 2.3.1 via a counting argument.

In the rest of this section we prove Theorem 2.2.5 using Lemma 2.3.1. We bound the

number of downsets by induction on d.

Our base case is when d = d0. In this case, the number of downsets is maximized when

the chains are all the same length, so we have an upper bound of (d0 + 1)n.

For larger d, first we identify a
(
c0d

3/2
)
-critical element v. The number of downsets

containing v is equal to the number of downsets in the poset remaining after we delete v and

everything it dominates. Similarly, the number of downsets not containing v is the number

of downsets in the poset remaining after we delete v and everything dominating v. In both

cases, the resulting poset is still n-mixing6, so we can induct. We call such a step (choosing

a critical element) an iteration.

It remains to bound the number of downsets that this process enumerates. By the

n-mixing property, there are at most n2 elements in the initial poset. We partition the

iterations into phases, where in phase i we reduce the size of the poset from n2

2i
elements to

n2

2i+1 elements. By definition, in phase i, d ≥ n
2i+1 . So, we can bound the number of iterations

required in phase i (call it ki) by:

c0

(n

2i+1

)3/2

ki >
n2

2i+1
.

Rearranging, we see it suffices to choose ki = 2(i+1)/2
√
n/c0. We continue until d = d0.

Summing across all phases, the number of choices to make is at most
√
n

c0

logn∑
i=0

2(i+1)/2 < 5
n

c0

.

6with respect to the (what remain of) the same chains

16

So, the algorithm enumerates at most (d0 + 1)n downsets in the base case and it makes at

most 5n/c0 choices during the inductive process. Thus, the number of downsets is at most

(d0 + 1)n25n/c0 = cn as required.

2.3.1 Proof of Main Technical Lemma

Finally, we prove Lemma 2.3.1. That is, we show that any n-mixing poset (V,≺) contains a

c0d
3/2-critical element as long as d ≥ d0. (Recall that d = |V |/n.)

We make use of the standard graph representation of the partial order: In this graph

there is a node for each element of the partial order, and a directed edge from v to u if

u ≺ v. Of course, this directed graph is acyclic. Henceforth, we refer only to this DAG

rather than to the poset. We partition the nodes of the DAG into levels as follows: Level 1

nodes are those with no outgoing edges, i.e., sinks of the DAG, and level i nodes are those

whose longest path to a sink (i.e., a level 1 node) has exactly i nodes. Note that each level

is an antichain.

Next, we create n disjoint subchains S1, . . . , Sn. The subchain Si will be a subset of the

nodes in Ci. We perform the assignment of nodes to subchains by processing up the DAG

level by level. Initialize every subchain Si to be empty. For each node u, consider the set of

indices I(u) = {j : u ∈ Cj}. Assign u to the subchain for an index in I(u) which currently

has the fewest nodes among those chains, i.e. arg minj∈I(u) |Sj|, breaking ties arbitrarily. If u

is the kth node assigned to a subchain Si, then we say the height of u is k. By construction,

the following properties hold:

(a) The Si’s are chains, since Si ⊆ Ci.

(b) The Si’s are disjoint.

(c) If u has height h, then u dominates at least h− 1 nodes in each of the subchains Sj

such that j ∈ I(u) (i.e., {j : u ∈ Cj}).

17

Claim 2.3.2. Let D be the set of nodes of height at least bd/2c. Each node u ∈ D dominates

at least c0 · d3/2 nodes, for d ≥ d0, where c0 and d0 are universal constants.

Proof. Suppose that u ∈ Si ∩ D is at height ` ≥ bd/2c, and let D(u) be the nodes in Si

of height d`/2e through `. By the mixing property, these nodes lie on at least 2
√
b`/2c

chains C. Moreover, by construction, on each subchain Sj ∈ C, at least b`/2c − 1 nodes are

dominated by some node in D(u) and hence are dominated by u. Therefore, u dominates at

least (b`/2c − 1) · 2
√
b`/2c+ (b`/2c − 1) = Ω(d3/2) nodes.

Since the number of nodes in the DAG is dn, we conclude:

Corollary 2.3.3. There is a set D of strictly more than |V |/2 nodes, that each dominate

Ω(d3/2) nodes.

A symmetric argument in which subchains are built starting from the sources of the

DAG shows that there is a set D of strictly more than |V |/2 nodes that are dominated by

Ω(d3/2) nodes. Therefore, there is some node v in the intersection of D and D. This is the

c0d
3/2-critical node we seek.

Remark 2.3.4. A crude analysis shows that c0 ≥ 1/8 when d0 > 25.

2.4 Rotations and the rotation poset

In this section we present a key theorem of Irving and Leather [IL86], and use it to prove

Theorem 2.2.6.

Theorem 2.2.6. For every stable matching instance I with a total of n men and women,

there exists an n-mixing poset (R,≺), called the rotation poset, such that the number of

downsets of the poset is equal to the number of stable matchings of I.

We begin with the definitions needed to prove Theorem 2.2.6.

18

Definition 2.4.1 (Rotation). Let k ≥ 2. A rotation ρ is an ordered list of pairs

ρ = ((m0, w0), (m1, w1), . . . , (mk−1, wk−1))

that are matched in some stable matching M with the property that for every i such that

0 ≤ i ≤ k−1, woman wi+1 (where the subscript is taken mod k) is the highest ranked woman

on mi’s preference list satisfying:

i) man mi prefers wi to wi+1, and

ii) woman wi+1 prefers mi to mi+1.

In this case, we say ρ is exposed in M .

We will sometimes abuse notation and think of a rotation as the set containing those

pairs. Also, we will need the following facts about rotations later.

Lemma 2.4.2 ([IL86, Lemma 4.7]). A pair (m,w) can appear in at most one rotation.

Lemma 2.4.3 ([GI89, Lemma 2.5.1]). If ρ is a rotation with consecutive pairs (mi, wi), and

(mi+1, wi+1), and w is a woman between wi and wi+1 in mi’s preference list, then there is no

stable matching containing the pair (mi, w).

Definition 2.4.4 (Elimination of a Rotation). Let

ρ = ((m0, w0), . . . , (mk−1, wk−1)) be a rotation exposed in stable matching M . The rotation ρ

is eliminated from M by matching mi to w(i+1) mod k, for all 0 ≤ i ≤ k − 1, leaving all other

pairs in M unchanged, i.e., matching M is replaced with matching M ′, where

M ′ := M\ρ ∪ {(m0, w1), (m1, w2), . . . , (mk−1, w0)}.

Note that when we eliminate a rotation from M , the resulting matching M ′ is stable.7

7Switching from M to M ′ makes all the women in ρ happier and all the men in ρ less happy. It is easy
to check that this switch cannot create a blocking pair inside the set ρ. The only other possibility for a
blocking pair is a man in ρ with a woman outside ρ. For (mi ∈ ρ, w 6∈ ρ) to become a blocking pair, mi

would have to prefer w to wi+1, but by the definition of rotation, wi+1 was the first woman on m’s list
who would prefer to be matched to him, so he cannot prefer w to wi+1. See also [GI89, Lemma 2.5.2].

19

Irving and Leather studied the following process: Fix a stable matching instance I.

Starting at the man-optimal matching8, choose a rotation exposed in the current matching,

and eliminate it. They show that for any stable matching M , there is a set of rotations,

R(M), one can eliminate (starting from the man-optimal matching) that will yield M .

However, there is a partial order on the set of rotations – some must be eliminated before

others.9 If ρ must be eliminated before ρ′, we write ρ ≺ ρ′. Let R be the set of rotations

for a stable matching instance, and let ≺ be that partial order on the rotations defined by

elimination order. We call this poset the rotation poset. See Figure 2.2 for an example of a

stable matching instance and the corresponding rotation poset.

For our purposes, the important result relating the rotation poset to stable matchings is

the following.

Theorem 2.4.5 ([IL86, Theorem 4.1]). For any stable matching instance, there is a one-to-

one correspondence between downsets of the rotation poset and the set of stable matchings.

In other words, the number of stable matchings is exactly equal to the number of downsets of

(R,≺).

Indeed, the downset corresponding to M is exactly the set R(M) discussed above.

Thus, to prove Theorem 2.2.6, it remains to show that the rotation poset associated

to any stable matching instance with a total of n men and women is n-mixing. First we

construct the chains C1, . . . , Cn. We will have one chain for each agent (man or woman),

where the corresponding chain contains all the rotations that include that agent. Call these

sets C1, . . . , Cn. To prove that C1, . . . , Cn is n-mixing, we first need to show that each Ci is

8 A fascinating fact about stable matching is that there is a matching, known as the man-optimal
matching, in which each man is matched with his favorite attainable partner. Recall that woman w is
attainable for man m if there is some stable matching in which they are matched.

9For example, a rotation containing a pair (m,w) is not exposed (and thus cannot be eliminated) until
that pair is matched, so a rotation with consecutive pairs (m,w′), (m′, w) must be eliminated first. The
details of exactly when one rotation must be eliminated before another are not of direct use to us (we
only require the rather coarse description in Claim 2.4.6), so we do not describe them here. See [IL86] or
[GI89] for a full description of the poset.

20

𝑚1, 𝑤1 ,
(𝑚2, 𝑤2)

𝑚3, 𝑤3 ,
(𝑚4, 𝑤4)

𝑚1, 𝑤2 ,
(𝑚4, 𝑤3)

𝑚2, 𝑤1 ,
(𝑚3, 𝑤4)

𝑚5, 𝑤5 ,
(𝑚6, 𝑤6)

𝑚7, 𝑤7 ,
(𝑚8, 𝑤8)

𝑚5, 𝑤6 ,
(𝑚8, 𝑤7)

𝑚6, 𝑤5 ,
(𝑚7, 𝑤8)

𝑚1, 𝑤3 ,
(𝑚2, 𝑤4)

𝑚3, 𝑤1 ,
(𝑚4, 𝑤2)

𝑚5, 𝑤7 ,
(𝑚6, 𝑤8)

𝑚7, 𝑤5 ,
(𝑚8, 𝑤6)

𝑚1, 𝑤5 ,
(𝑚2, 𝑤6)

𝑚3, 𝑤7 ,
(𝑚4, 𝑤8)

𝑚1, 𝑤6 ,
(𝑚4, 𝑤7)

𝑚2, 𝑤5 ,
(𝑚3, 𝑤8)

𝑚5, 𝑤1 ,
(𝑚6, 𝑤2)

𝑚7, 𝑤3 ,
(𝑚8, 𝑤4)

𝑚5, 𝑤2 ,
(𝑚8, 𝑤3)

𝑚6, 𝑤1 ,
(𝑚7, 𝑤4)

𝑚1, 𝑤7 ,
(𝑚2, 𝑤8)

𝑚3, 𝑤5 ,
(𝑚4, 𝑤6)

𝑚5, 𝑤3 ,
(𝑚6, 𝑤4)

𝑚7, 𝑤1 ,
(𝑚8, 𝑤2)

𝑚1, 𝑤4 ,
(𝑚5, 𝑤8)

𝑚2, 𝑤3 ,
(𝑚6, 𝑤7)

𝑚3, 𝑤2 ,
(𝑚7, 𝑤6)

𝑚4, 𝑤1 ,
(𝑚8, 𝑤5)

Men’s preferences:

m1 w1 w2 w3 w4 w5 w6 w7 w8

m2 w2 w1 w4 w3 w6 w5 w8 w7

m3 w3 w4 w1 w2 w7 w8 w5 w6

m4 w4 w3 w2 w1 w8 w7 w6 w5

m5 w5 w6 w7 w8 w1 w2 w3 w4

m6 w6 w5 w8 w7 w2 w1 w4 w3

m7 w7 w8 w5 w6 w3 w4 w1 w2

m8 w8 w7 w6 w5 w4 w3 w2 w1

Women’s preferences:

w1 m8 m7 m6 m5 m4 m3 m2 m1

w2 m7 m8 m5 m6 m3 m4 m1 m2

w3 m6 m5 m8 m7 m2 m1 m4 m3

w4 m5 m6 m7 m8 m1 m2 m3 m4

w5 m4 m3 m2 m1 m8 m7 m6 m5

w6 m3 m4 m1 m2 m7 m8 m5 m6

w7 m2 m1 m4 m3 m6 m5 m8 m7

w8 m1 m2 m3 m4 m5 m6 m7 m8

Figure 2.2: A size-8 stable matching instance with its rotation poset. This is part of the

family of instances described by Irving and Leather, which produces the Ω(2.28n) lower

bound.

21

indeed a chain, i.e., every pair of rotations where a specific agent appears are comparable

and second we need to show that C1, . . . , Cn satisfy property (ii) of Definition 2.2.4.

Claim 2.4.6. If two rotations share an agent, then they are comparable.10

Proof. First, suppose that the shared agent is a man. If it is a woman, we can just switch

the designations of “men” and “women” and use the same proof on the “reversed” version

of the rotation graph. Let ρ1, ρ2 be rotations sharing an agent m, and let m be matched to

w1 in ρ1 and w2 in ρ2, where m prefers w1 to w2.

For the sake of contradiction assume that ρ1 and ρ2 are incomparable. We show that

there exists a rotation ρ which causes m to skip over w1. This would contradict Lemma 2.4.3

as it implies that (m,w1) belongs to no stable matching.

Suppose we start from the man-optimal stable matching and eliminate all rotations dom-

inated by ρ2 and let M be the resulting stable matching. By the correspondence in The-

orem 2.4.5, (m,w2) ∈ M . Since m prefers w1 to w2, there must be a rotation ρ that we

eliminated which caused m to be matched to someone worse than w1 for the first time. Since

ρ2 and ρ1 are incomparable, ρ1 6= ρ. Therefore, by Lemma 2.4.2 (m,w1) /∈ ρ; so, ρ caused m

to skip over w1. This is a contradiction.

Claim 2.4.7. Every set of k rotations contains at least 2
√
k agents.

Proof. We argue by contrapositive. Suppose we have a set of rotations involving fewer than

2
√
k agents. Every rotation contains a (man, woman) pair, who (by Lemma 2.4.2) have not

appeared together before. With fewer than 2
√
k agents, there are strictly less than k (man,

woman) pairs which can appear, and thus fewer than k rotations in the set.

2.5 Conclusion

We have shown there is some constant c such that f(n) ≤ cn. We have not made a significant

effort to optimize the constants in our argument, favoring ease of exposition over the exact

10This observation is not novel; for example, it is implicit in the discussion of [GI89], but we have not
seen the statement explicitly written down, so we prove it here.

22

result. By making a few minor changes to the argument, we obtain f(n) ≤ 217n for sufficiently

large n.

A more careful argument could probably improve this constant somewhat, but this ap-

proach will not get a constant c close to the (approximately) 2.28 we would need to match

the best known lower bound. Determining the precise asymptotic behavior of f(n) remains

an interesting open problem.

23

Chapter 3

ONLINE MATCHING

3.1 Introduction

In this chapter, we discuss the Min-Cost Perfect Matching with Delays problem (MPMD).

In MPMD, a series of requests appear over time in a metric space. Our goal is to pair these

requests (online) to minimize the distances between matched pairs plus the time each request

waits to be matched. As motivation, consider the scenario of running a gaming server. Each

request is a player looking for a partner to play against. The metric space represents the

quality of game expected between those two players (which might take into account player

ability, connection strength, and other factors). Our minimization, then, has the goal of

ensuring players get compatible opponents, but also that they do not get bored waiting to

be matched to their opponent.

More formally, fix a metric space (X , d). A total of 2m requests appear at points

x1, . . . , x2m in the metric space. The requests appear at times t1, . . . , t2m. At any time t >

ti, tj our algorithm can decide to match requests i and j, at a cost of (t−ti)+(t−tj)+d(xi, xj).

All requests must be matched before the algorithm ends. When X is a finite metric space,

we denote |X | by n.

In the basic version of the problem, the requests (both the times and locations where

they appear) are chosen by an adversary who has knowledge of the algorithm being run to

create the matching. If the algorithm is randomized, the adversary is oblivious. That is the

adversary will know the distributions of any random variables utilized by the algorithm, but

cannot see their actual values before choosing the input.

Since we are making matching decisions as requests appear (and cannot undo a pairing

once it is made) we use competitive analysis. We wish to minimize the ratio between the

24

(expected) cost of our algorithm and the cost of the best possible matching (made with

knowledge of the exact set of requests).

Since its introduction by Emek, Kutten, and Wattenhofer in 2016 [EKW16], MPMD has

been the focus of a flurry of activity in the theory community. As one of our major con-

tributions is to tie together much of the previous work with the “ball growing” metaphor,

we discuss the prior work extensively. We divide our study of previous work into three sec-

tions: in the first two sections, we study the power of randomization for MPMD algorithms.

Section 3.3 will discuss randomized algorithms for MPMD, and section 3.4 will recap deter-

ministic algorithms. There is still a substantial gap between the quality of matches made by

randomized and deterministic algorithms for this problem. Then, in section 3.5, we discuss

extensions to the basic MPMD problem, including the “bipartite” version of the problem

(where requests come in two different types that can only be matched to each other) and

the “impatient” version where the penalty for keeping a request unmatched grows as some

convex function of the waiting time.

We also outline our new applications of the ball growing approach. In section 3.6 we

show that ball growing performs very well for requests drawn randomly. Then, in section 3.7

we show that a ball growing algorithm can match the best known bounds for MPMD. Before

moving to the previous work, we fix a consistent set of notation, then we spend section 3.2

developing intuition for MPMD with two example instances which have been helpful for

algorithm designers.

3.1.1 Notation

Let B(x, r) = {y ∈ X : d(x, y) ≤ r} be the ball of radius r centered at x. We denote the

cost incurred by the current algorithm under study by ALG. We will compare to OPT the

cost for the optimal (found offline) solution. When it causes no confusion, we will refer to

the algorithms themselves as ALG and OPT. We will occasionally need to separate the time

cost and distance costs of the algorithms in our analyses. We add a subscript “time” to

denote time cost and subscript “dist” to denote distance cost.

25

For deterministic algorithms, we say ALG is α-competitive if for all inputs,

ALG ≤ α ·OPT

The goal of the algorithm designer is to minimize α.

For randomized algorithms, ALG is a random variable, so our goal is to show E[ALG] ≤

α·OPT (note that even though ALG is randomized, OPT will not be, as it has full knowledge

of the sequence).

Number the requests 1, 2, . . . , 2m. We use ri to denote the ith request. The request ri is

defined by xi and ti, respectively the location and time where the request arrives. We say ri

is “pending” at time t if t > ti and ri has not yet been matched (i.e. it is available for the

algorithm to match it). When it does not cause confusion, we will conflate a request with

the point where it is located.

3.2 Intuition via Examples

Two example instances are quite useful in explaining why MPMD is a non-trivial problem.

We start by introducing these two examples so that the reader can see immediately why

algorithm designers have made certain choices. For both of the examples, we will describe the

construction and then briefly explain why the example makes designing MPMD algorithms

more difficult.

3.2.1 A Bad Example for Greedy Algorithms

We begin with an example adapted from previous literature. Prior to the invention of MPMD,

computer scientists studied offline versions of matching problems. In that literature, Reingold

and Tarjan produced an instance to show that a greedy algorithm was not a good choice in

their offline setting [RT81].

The instance is constructed recursively. The base case (iteration 0) of the construction

is a set of 4 requests on a line, the middle two requests are at distance 1− ε, while the outer

two requests are distance 1 from the closer of the middle two. To make the ith iteration

26

Figure 3.1: Iterations 0, 1, and 2 of a construction that causes poor performance for greedy

algorithms.

of the construction, we take two copies of the iteration i − 1 construction, and place them

next to each other (on the same line) such that the closest requests from the two copies are

distance 3i(1− ε) apart. See Figure 3.1.

The instance is designed to make algorithms that greedily match requests (i.e. by match-

ing the two closest unmatched requests) behave poorly. A greedy algorithm will match as

follows. First it matches the middle requests of every copy of an iteration 0 instance. Each

iteration 1 instance is now just 4 requests with the middle two slightly closer to each other

than any other pairs (and with the level 1 instances well-separated enough to not interfere).

This pattern continues, always matching the “middle two” requests in each instance. See

Figure 3.2 for a visual representation of a greedy algorithm matching this instance.

It is not hard to see that this is not the optimal choice. Instead of starting by matching

the requests at distance 1− ε, match all pairs at distance 1.

We omit a careful computation of the exact competitive ratio for this algorithm on this

instance, and just state the final ratio:

27

Figure 3.2: The matching choices made by a greedy algorithm on iteration 2 of the construc-

tion. The algorithm matches the closest requests first, then matches remaining (unmatched)

pairs in order of distance. Semi-transparent requests are already matched.

Theorem 3.2.1 (Reingold and Tarjan [RT81]). On an instance of Example 1 with m re-

quests, the greedy algorithm incurs a factor Ω(mlog2(3/2)) ≈ Ω(m0.584) more distance cost than

OPT.

It is worth noting that at this point we have not defined an MPMD instance. So far

we have only asked for a perfect matching in a metric space, there is no time component.

An adversary could easily utilize this instance by simply causing it to appear (i.e. have all

requests arrive simultaneously). In this case, if our algorithm only makes very local/very

greedy decisions, we risk being tricked by this instance.

3.2.2 A Bad Example for Jumpy Algorithms

Our next instance shows that sometimes significant patience is required to find good matches;

even when requests appear at the same point in the metric space, it still may be wise to

wait to match requests. The instance appears (independently) in papers by Azar and Jacob-

28

Fanani [AJF18] and Liu, Pan, Wang, and Wattenhofer [LPWW18].

Our metric space has only two points, at distance 2 from each other, call the points x

and y. Requests appear online at both x and y at each of the following times: 0, 1− ε, 1, 2−

ε, 2, 3 − ε, 3, The optimal matching is the following: pair the first two requests (that

appear at t = 0) to each other, (at a cost of 2) for all remaining pairs, match the requests

that appear at the same locations at times a− ε, a for all a ≥ 1. We incur a matching cost

of (m− 1)ε+ 2.

It is fairly natural to imagine matching rules will follow the following principle: “if there

are at least two requests at the same point, match them.” After all, those requests will

incur no distance cost. However, this example makes following such a principle complicated.

Imagine an algorithm which will not match the first pair requests at x and y before the

next pair of requests appear. By following the principle, both matches incur 1− ε time cost,

whereas had the new requests been ignored for just ε time, the new pairs could be matched

at a (time) cost of ε each. If this behavior is repeated, the jumpy algorithm will incur a cost

of m(1− ε). See Figure 3.3. Observe that for ε = Θ
(

1
m

)
, we get a competitive ratio of Ω(m).

We will not try to formalize the purpose of this example into an actual theorem. We will

see two ways to avoid this example in this chapter. The first is to allow for the algorithm

to remember some state. The key to this example is repeating the “surprise appearance” of

another pair ε time after an appearance. If an algorithm can “remember it was tricked” and

alter its behavior it can sidestep this example. The second way to avoid the issue is to throw

out the natural principle and allow requests at the same location to go unmatched (until,

for example, both have waited for similar amounts of time).

3.3 Randomized MPMD algorithms

We now turn to a discussion of algorithms for MPMD. We start with a discussion of ran-

domized algorithms. We give a brief description of the various algorithms that have been

used, as well as the key observations required to understand the algorithms and prove their

correctness. For this section, we assume the underlying metric space (X , d) is finite.

29

Figure 3.3: On the top, a matching made by a “jumpy” algorithm, below is the optimal

matching for this instance. The two points of the metric space are shown vertically, with

time progressing horizontally.

30

The first paper to discuss randomized algorithms for MPMD was Emek et al.’s introduc-

tory paper on MPMD [EKW16]. Their algorithm proceeds in two steps, the first of which is

to embed into a binary HST.

Hierarchically Separated Trees are a common tool in algorithm design. We do not cover

the details here (see, e.g. [WS11] for a sample construction). Multiple papers on MPMD

have used HSTs, each needing a slightly different flavor, so we do not state the details each

time. As a sample, here is the result we need in our work:

Let D be a distribution over trees, such that the leaves of every tree are in bijection with

X . We say we have embedded (X , d) into D if:

1. for all T in the support of D, d′T (u, v) ≥ d(u, v) for all u, v ∈ X

2. ET∼D[d′T (u, v)] ≤ O(log n)d(u, v) for all u, v ∈ X .

where d′T (·, ·) is the natural distance metric in T .

Theorem 3.3.1. There is a polynomial time algorithm to choose a tree according to D.

The first construction of HSTs with O(log n) distortion is [FRT04]. HSTs are a useful

tool as trees are a much simpler space to design algorithms. Since the adversary is oblivious

to our random choices, the adversary cannot know which pairs u, v ended up far from each

other in the tree metric. It knows only that in expectation each pair is stretched by at most

O(log n).

With the tree in hand, we can run the algorithm. Whenever a request appears in the

“real” metric space, we think of a request as appearing in the corresponding leaf of the HST.

Now on a binary tree, the algorithm proceeds as follows. If two requests are pending at the

same leaf, match them. Now, for every vertex v, such that both of its children have an odd

number of requests pending in their subtrees: proceed down the tree (from both children),

always going to the odd child, until reaching a leaf. We will find two pending requests this

way (call the corresponding leaves x and y). Now at v, set an exponentially distributed timer

31

with parameter proportional to 1/d′T (x, y). If the timer expires before the request at x or at

y is matched, then match them when the timer expires.

The key of the analysis is to reinterpret the execution of the algorithm as an Alternating

Poisson Process. We will not recap the details of the proof here, except to mention that

the height of the HST appears in the competitive ratio. The height of the tree is O(log ∆),

where ∆ =
maxx 6=y∈X d(x,y)

minx6=y∈X d(x,y)
. We will see that the height of the HST commonly appears in these

bounds.

Their final result is the following:

Theorem 3.3.2 (Emek et al. [EKW16]). There is an O(log2(n) + log(∆))-competitive

algorithm for MPMD.

3.3.1 Decreasing the competitive ratio

The next major paper on MPMD was by Azar, Chiplunkar, and Kaplan [ACK17]. The paper

has three main contributions: an introduction of the bipartite version of MPMD (which we

discuss in section 3.5), a lower bound of Ω
(√

log n
)

on the competitive ratio for any MPMD

algorithm, and finally an algorithm that achieves an O(log n) competitive ratio for MPMD.

The intuition for the algorithm is very similar to the intuition we will use for our own

algorithm on this problem, (and is the current best-known for the problem) so we describe

it in detail.

As with [EKW16], the first step is to embed into an HST. Unlike Emek et al., Azar et

al. can use height-reduced HSTs (inspired by the work of Bansal, Buchbinder, Madry, and

Naor on the k-server problem [BBMN15]). These trees have height O(log n), which will be

one of the keys to improving the algorithm.

The other key is a deterministic algorithm, which achieves an O(h) competitive ratio on

trees of height h.

We begin with the intuition behind this algorithm. Since our goal is to have a competitive

algorithm, we want to avoid times where our algorithm is incurring cost, but OPT is not.

32

ALG and OPT will both incur costs as long as they have requests pending, and whenever

they match requests to each other. The key to the analysis is to show that if OPT and ALG

aren’t incurring similar waiting costs, then it must be that OPT incurred some large amount

of distance cost to cause the imbalance.

More specifically, fix some vertex u of the tree, and consider the subtree Tu rooted at

u. If both ALG and OPT have the same number of requests pending inside Tu, then we do

not need to worry about this tree (ALG is incurring just as much waiting cost here as OPT

is). On the other hand if OPT has fewer requests pending, OPT will not be incurring the

same amount of waiting time in that subtree. Our hope would be to show that OPT must

have matched some request inside Tu to another request far away and thus used significant

distance cost to cause Tu to be this imbalanced.

Unfortunately, only knowing that OPT has fewer pending requests than ALG is not

sufficient to argue that OPT has incurred significant distance costs – it could be that it

matched two pending requests inside Tu to each other before ALG decided to. Luckily, this

kind of matching is not concerning for us. Intuitively, an algorithm will have to wait a bit

longer than OPT to match requests; OPT has foreknowledge of the coming requests and can

match as soon as both requests are available (while ALG will have to wait a bit to ensure no

better option is coming along). The algorithms for these problems ensure that the time and

distance costs of our algorithms are on the same order of magnitude, so as long as OPT is

making the same matching decisions as ALG is, the algorithm will be competitive. Instances

where OPT and ALG pair different requests are the real concern of these arguments.

Observe that when OPT or ALG match a pair within Tu the number of requests may

be different, but their parities will not change. Indeed, the only way to change the parities

of ALG’s pending requests in Tu or OPT’s relative to each other is to have OPT or ALG

match a request inside Tu to one outside Tu. Observing that whenever the number of requests

pending for OPT in Tu is odd requires OPT to be incurring waiting time, parity will still

suffice for arguing about waiting time.

With this intuition in hand, let’s summarize their algorithm. Recall we have embedded

33

our metric space into an HST, so we care only about a tree metric, and the requests are

appearing at the leaves. We use w(e) to denote the weight of edge e in the tree metric.

ALG will maintain a forest F , a subset of the edges of the HST. F starts empty. At every

instant, consider each vertex u. If the number of requests pending inside Tu is odd, “pay”

at a unit rate toward eu, the edge above u. When ALG has “paid” w(eu) toward eu, add eu

to F . Whenever every edge between two requests is in F , we match those two requests, and

remove all used edges from F .

At a high-level, the correctness argument involves charging the purchases of eu to the

cost of OPT. Note that if OPT has matched a request in Tu to one outside Tu, then OPT has

incurred a large amount of distance cost relative to one purchase of eu. On the other hand,

if OPT does not match from inside Tu to outside Tu, then we consider two consecutive times

where ALG bought the edge eu. Over those two “phases” OPT had the same parity as ALG

inside Tu in exactly one of them (between the two purchases, ALG used the edge to match

a request in Tu to one outside Tu so ALG’s parity changed. Since OPT did not match from

inside Tu to outside Tu, OPT’s parity did not). Thus, the design of the algorithm guarantees

that during one of those two phases, OPT and ALG had the same parity, and so ALG was

odd a constant fraction of the time ALG was (at least w(eu) time units, during the time that

ALG was odd for 2w(eu) units).

To handle all metrics, Azar et al. randomly embed into an HST. Notice that ALG now

operates in the “wrong” metric. It is minimizing the distances in the tree metric, which can

be wrong (in expectation) by an O(log n) factor. But since the distance cost of ALG is so

close to the total cost of OPT, and the trees are of small height, we still arrive at the desired

result.

Theorem 3.3.3 (Azar et al. [ACK17]).

E[ALG] ≤ O(log n)OPT

34

Avoiding the Bad Examples

Before moving on to deterministic algorithms, let’s examine how these algorithms avoid the

bad examples of section 3.2. Embedding into tree metrics sidesteps the first example. The key

to the example is to create four points a, b, c, d such that d(a, b) ≈ d(b, c) ≈ d(c, d)� d(a, d),

but since distances are dependent upon least-common-ancestors, it is not possible to achieve

all of these requirements at once. The second example is handled with “memory.” For the

second example to achieve large competitive ratio, it must be able to repeat the “surprise

appearance” arbitrarily many times. However, when ALG matches two requests at the same

location, it does not remove any of the edges of F , nor does it forget about the waiting time

it has already spent toward purchasing any of the edges. Once the trick has been repeated

enough to buy a few edges, ALG connects two requests at different points. From then on,

ALG will match the requests that appear ε time apart. That is, by purchasing edges, ALG

can “remember” that it has left requests waiting for a long time already, and thus should

not be afraid to match at a more substantial distance.

As a final remark for this section, we note that this algorithm nearly matches the best

known lower bounds for the problem. The best known lower bound for MPMD is due to

Ashlagi et al. [AAC+17].

Theorem 3.3.4 (Ashlagi et al. [AAC+17]). There is no (randomized) algorithm for MPMD

which is o
(

logn
log logn

)
-competitive.

There is thus only a very small gap between the best-known upper and lower bounds

when randomization is allowed.

3.4 Deterministic MPMD Algorithms

While there is still a small gap between the upper and lower bounds for randomized MPMD

(and MBPMD, see section 3.5), the problems are somewhat well-understood at this point.

The situation is very different if randomization is not allowed. Deterministic algorithms

offer some benefits. The randomized algorithms we have described behave very well in

35

expectation, but they leave open the possibility of a very unlucky choice of HST leading

to a bad competitive ratio. In scenarios where an algorithm designer is more risk-averse,

one might be willing to accept a higher competitive ratio in exchange for derandomization

(thus getting a worst-case guarantee, instead of the average case expectation analyzes).1

To date, there have been three main approaches to deterministic MPMD algorithms in the

literature. A simple greedy algorithm, a smarter greedy-ish algorithm, and a very different

LP-duality-based algorithm. We recap the intuition behind each in this section.

3.4.1 Local Algorithms

We begin with the greedy-inspired approaches. Bienkowski, Kraska, and Schmidt have the

first paper in this sequence [BKS17a]. The ideas behind both the algorithm and its analysis

are straightforward. Whenever a request appears, start growing a ball around the request

with the radius increasing at half the speed time is passing.2 When two balls overlap (i.e.

when the sum of their radii is at least the distance between the two points) and the radii of

the two balls are within a factor 2 of each other, the two requests are matched. Growing balls

around requests should be natural – the goal is to balance the costs incurred due to space

and time. By slowly allowing worse and worse distance matches, we increase the chances

that our time and space costs will be balanced.3

The second piece of the matching rule is less obvious, but it can be made intuitive by

considering the example of subsection 3.2.2. In that example, one sees that a rule that always

immediately matches nearby requests (or even requests directly on top of each other) can be

exploited by an adversary to create a large competitive ratio. The adversary can force the

1Note that since MPMD is inherently an online problem, usual tricks to get high probability bounds,
like taking the best of independent runs of the algorithm, do not apply to MPMD.

2Bienkowski et al. do not use the ball-growing metaphor to describe their algorithm (they talk about
budgets). Azar and Jacob-Fanani use this metaphor in [AJF18] for their algorithm, and suggest applying
the metaphor back onto [BKS17b]. Since we also use ball growing as a metaphor for our similar algorithms,
we use this language whenever possible to emphasize the common thread in the literature.

3Of course the adversary can force these numbers to still be quite imbalanced, even on the ball-growing
algorithm, but this approach limits the ways that the adversary can hurt us.

36

algorithm to match some requests immediately, while leaving others pending for extended

periods, where the optimal matching still incurs little time penalty.4

The analysis mostly follows from a few simple observations about the algorithm: for

example, if the algorithm decides to match request r1 to r2 when r3 is pending, then r1 and

r3 must be far in distance or have arrived at very different times (or else r1 and r3 would

have been matched instead of r2). The algebra required to bound the competitive ratio is

more involved than it is enlightening, so we will not recap it here. Their final result is the

following:

Theorem 3.4.1 (Bienkowski, Kraska, Schmidt [BKS17a]). There is a deterministic algo-

rithm for MPMD that achieves an O(mlog2(5.5)) ≈ O (m2.46)-competitive ratio.

Note that the ratio is now measured in terms of m (the number of requests) not n (the

size of the metric space). Indeed, these deterministic algorithms all work on continuous

metric spaces, even spaces that are unknown to the algorithm (assuming the algorithm has

access to distances between requests).

Bienkowski et al.’s ball-growing approach is improved by Azar and Jacob-Fanani in

[AJF18]. They also grow balls, but they do not do so in (X , d), the metric space where

requests appear. Instead they grow in the metric space(X × R, D) where D(r1, r2) =

d(x1, x2)+ |t1− t2|, i.e. the metric space where the distance between requests is the penalty

OPT would face for matching those two requests. Moreover they grow only hemispheres;

the balls only grow backward in the time axis (they do not grow forward in time, hence

becoming only hemispheres).

The tools of the analysis are fundamentally similar to the ones used by [BKS17b], so we

will not recap the arguments. Instead, we highlight performance of the hemisphere-growing

on our two canonical examples. From the example from subsection 3.2.2, we see why Azar

and Jacob-Fanani chose to grow only hemispheres instead of full spheres. If full spheres

4Since the competitive ratio proven in Bienkowski et al.’s paper is ω(m), an example showing that the
balance condition is necessary to avoid an Ω(m) ratio is not perfectly compelling for the importance of
the rule in this context, but as this same example is useful in other contexts, we simply use that one.

37

were grown, then the requests that appear at time a − ε would be matched to the request

that appeared at time a − 1, creating the bad solution. On the other hand, when requests

are only growing hemispheres: it takes only ε time for the appearances at time a to have

their hemispheres envelope the previous request at its location. On the other hand, requests

at time a − ε will take 1 − ε time before their hemispheres hit another request. Thus the

algorithms actually find the optimal matching by looking only behind in time instead of

looking forward.

On the other hand, both ball growing algorithms fail miserably when given the example

from subsection 3.2.1. Both match greedily (as shown in Figure 3.2). This guarantees a

competitive ratio of at best O(mlog2(3/2)) ≈ O(m0.46). Modulo technical details, this is a

sharpness example for the competitive ratio of the algorithm.

Theorem 3.4.2 (Azar and Jacob-Fanani [AJF18]). There is a deterministic algorithm for

MPMD that achieves an O(m0.46)-competitive ratio.

3.4.2 A different approach

We were able to phrase all the algorithms in the last section as variations on “ball growing.”

Not all algorithms for MPMD fit nicely into this framework. Bienkowski, Kraska, Liu,

and Schmidt consider a very different kind of algorithm for MPMD [BKLS18]. They use a

primal-dual LP-based approach. They consider the linear program in Figure 3.4. Each xe is

supposed to approximate an indicator that we will put e = (ri, rj) into our matching. Let

opt-cost(e) be the cost that OPT would incur to match e = (ri, rj), i.e. d(xi, xj) + |ti − tj|.

For a set S let sur(S) be the number of unmatched requests in a maximum matching of S

(for MPMD, this is just |S| mod 2), and let δ(S) be all possible (unordered) pairs of requests,

with one request in S and one outside S. We use R to denote the set of all requests, and E

to be the set of potential matches. Consider the LP and its dual, shown in Figure 3.4.

The algorithm is a greedy algorithm on the dual LP. It maintains a partition of all the

requests it has seen (both pending and matched) into “active sets.” When a new request

38

minimize
∑
e

opt-cost(e) · xe maximize
∑
S⊆R

sur(S)yS

subject to
∑
e∈δ(S)

xe ≥ sur(S) ∀S ⊆ R subject to
∑

S:e∈δ(S)

yS ≤ opt-cost(e) ∀e ∈ E

xe ≥ 0 ∀e ∈ E yS ≥ 0 ∀S ⊆ R

Figure 3.4: The linear program of Bienkowski et al., along with its dual.

appears, a new active set containing only that variable is created. While a set S is active and

sur(S) > 0, yS grows at unit rate. When a constraint involving two active sets S, T becomes

tight, S and T are made inactive, S∪T becomes active, and if there are any possible matches

in S ∪ T they are made. Verifying some technical details, the algorithm maintains a feasible

dual point at every point in time. The final analysis uses duality to argue about the quality

of the final result.

Theorem 3.4.3 (Bienkowski, Kraska, Liu, Schmidt [BKLS18]). The competitive ratio of the

greedy dual algorithm is O(m).

The gap between the primal-dual approach and the local approaches is not a result of the

analysis. Indeed, Bienkowski et al. produce an MPMD instance on which their algorithm

performs a factor m worse than optimal (i.e. showing the competitive ratio is Θ(m)). Their

tightness construction has a similar flavor to the example in subsection 3.2.2.

3.5 Extensions of MPMD

The version of MPMD we have discussed so far is not the only version of MPMD which has

been studied. Since the introduction of the original problem, researchers have modified it to

model problems that do not quite fit into the standard MPMD model. We briefly discuss

the two main threads already in the literature.

39

3.5.1 Bipartite

The most-studied extension of MPMD is the “bipartite” version of the problem (MBPMD).

The bipartite version has a very similar problem statement, but with the addition that every

request that appears has a polarity (either positive or negative), and matches can only be

made between requests of opposite polarities. MBPMD is a better analogue for certain

real-world matching problems. The most obvious such problem is that faced by ride-sharing

apps (like Lyft and Uber). To model that problem, the positive requests represent people

willing to give a ride and negative requests represent those looking for rides. As with the

non-bipartite version, a perfect matching is always possible once all requests have appeared,

i.e. there will be an equal number of positive and negative requests.

While the problems appear quite similar on the surface, there is no known general re-

duction from one to the other. However, researchers have had consistent success in adapting

algorithms designed for MPMD to apply in the bipartite case. Indeed, for both randomized

and deterministic algorithms, the best-known upper bounds are the same and come from

similar algorithms, while the best-known lower bounds are similar constructions.

We begin with randomized algorithms. The best-known algorithm is due to Ashlagi et

al. [AAC+17]. It follows very closely the ideas Azar et al. in [AAC+17], for the non-bipartite

version, so we only highlight the differences. As before, the algorithm begins by reducing

to the case of a tree. Rather than maintaining a single forest of purchased edges, for the

bipartite version, Ashlagi et al. maintain two forests – one which represents positive requests

waiting, the other represents negative requests waiting. Edges are purchased for the positive

(negative) forest if the number of pending positive (negative) requests in a subtree outnumber

the negative (positive) requests. If there is a pair of requests (one positive and one negative)

such that the positive forest has every edge from where the positive request is pending to the

least-common-ancestor of the two requests and the negative forest has every edge from the

negative pending request to the least-common-ancestor, then the two requests are matched.

40

Theorem 3.5.1 (Ashlagi et al. [AAC+17]). There is an O(log n)-competitive algorithm for

MBPMD.

The proof of correctness is essentially the same except that the second forest induces

increases the competitive ratio by a constant factor.

The lower bound construction also can be adapted to the bipartite case, but at a more

significant cost.

Theorem 3.5.2 (Ashlagi et al. [AAC+17]). There is no (randomized) algorithm for MBPMD

with a o
(√

logn
log logn

)
competitive ratio.

Note that there is still a O(
√

log n/ log log n) gap between the best-known upper and

lower bounds for (randomized) MBPMD.

On the deterministic side, again a minor modification causes the best-known algorithm

to lose only a constant factor in the competitive ratio. Azar and Jacob-Fanini’s algorithm

can be modified (by just adding a rule that the algorithm matches only if the requests to be

matched are of opposite polarity).

Theorem 3.5.3 (Azar and Jacob-Fanini [AJF18]). There is a deterministic MBPMD algo-

rithm that achieves an O (m0.46)-competitive ratio.

Incidentally, Bienkowski et al.’s primal-dual algorithm can also be modified to function

for the bipartite version, with the same O(m) competitive ratio.

3.5.2 Alternate costs

Having linearly increasing costs for distance and time is a natural choice for an initial model,

but this may not always accurately reflect reality. A natural alteration to the problem is to

impose super-linear costs for waiting time. A person may not notice the difference between

a 20 second wait and 30 second wait on our gaming server, but is likely to grow increasingly

frustrated as the waiting time goes beyond 5 minutes. Liu, Pan, Wang, and Wattenhofer

41

therefore consider what happens if the time penalty grows as a convex function [LPWW18].

We follow [LPWW18] and call this problem convex-MPMD.

Intuitively, making the penalty an increasing function of the wait time seems to make the

problem much harder – the existing algorithms for MPMD all strategically leave a request

pending to balance the potential distance and time costs. With a convex time penalty the

ability to leave a request is severely limited. To simplify the new tradeoff, they only consider

the problem on uniform metric spaces.

In this new, simplified setting they show for many simple convex functions the competi-

tive ratio is Θ(n).

Theorem 3.5.4 (Liu et al. [LPWW18]). There is an algorithm for convex-MPMD that

achieves an O(n)-competitive ratio on uniform metric spaces.

Theorem 3.5.5 (Liu et al. [LPWW18]). Every convex-MPMD algorithm on uniform metric

spaces incurs penalty Ω(n).

The algorithm that achieves the O(n) ratio is not patient – if δ is the distance between

any two points in X , and some pair of requests have both waited 2δ time it is immediately

matches that pair. It is also “jumpy” in the sense of immediately matching requests pending

at the same point. We will not cover the details of the algorithm or the lower bound.

3.6 Our Initial Work – Stochastic Setting

We now turn to our own work on MPMD. In our survey of the prior literature, we observed

that ball growing is a common (and useful) metaphor for describing deterministic algorithms

for MPMD, but has not been used in randomized algorithms. We are able to design a ball-

growing based algorithm for MPMD that matches the best known randomized algorithms,

connecting ideas from the two threads of MPMD literature. Before getting to that algorithm,

we increase our intuition for ball growing by showing a simple version in a stochastic setting.

In the standard MPMD setting, an adversary chooses the location and time of appearance

for each request. Such a model is useful if one is concerned about malicious inputs or does

42

not know much about the requests that will be given to the algorithm. However, if one

desires to model a system where the inputs are predictable (e.g., from historical data) and

not likely to be manipulated, it may be more accurate to view the requests as generated

randomly.

Our5 initial work on MPMD focuses on this problem. We assume that the interarrival

times (i.e. the time between when requests appear) are drawn i.i.d. from an exponential

distribution. When a new request appears, its location is drawn according to a (fixed, but

unknown) distribution over the points in the metric space.

In this setting, it no longer makes sense to think about competitiveness as the worst

possible ratio between our performance and the optimal. Any instance an adversary could

invent has some (very small) probability of actually begin drawn6. The probabilistic assump-

tion does not give any benefit for the worst-case. Instead we’ll consider the expected value

(over only the drawing of the instance – our algorithm is deterministic) of our algorithm’s

performance against the optimal matching. In a slight abuse of terminology, we will still

refer to this number as the competitive ratio.

We show that a simple algorithm has expectation within an O(1)-factor of optimal. Our

algorithm simply grows a ball around every request (with the radius increasing at unit rate).

When two balls intersect, match the two requests.

3.6.1 The “Ball Growing” Algorithm

The key idea behind all of our algorithms is “ball growing.” Each request maintains a

number, which we think of as the radius of a ball surrounding the point in the metric space.

In the basic version of the algorithm, the radius is exactly how long that point has been

waiting to be matched, i.e. for each point the radius starts at 0 when the point appears

and increases continuously at a unit rate. As soon as two balls intersect, we match the

5this is joint work with Anna Karlin, Shayan Oveis Gharan, and Alireza Rezaei

6or more accurately a slightly perturbed version, since our model does not allow for exactly simultaneous
arrivals.

43

corresponding points. Note that this matching rule implies that the balls for unmatched

points are always disjoint.

Formally, we use the following model. Let (X , d) be an underlying metric space. In this

section, we make no assumptions on the underlying metric space. For example, our spaces

are allowed to be continuous.

Requests arrive randomly in the space as follows:

• Interarrival times: When each request arrives, we start a new (independent) expo-

nential clock with parameter λ. When the clock fires, a new request appears.

• Location of arrival: The location of each new request is independently drawn from

the density function f(·).

3.6.2 Analysis

Recall that our algorithm creates a ball of radius 0, centered at every new request that

appears. The radius of each ball increases at a constant rate so that t time units after it

arrives, the radius of the ball is t. When the balls for two requests overlap, we match those

two requests.

Let B(x, r) = {y : d(x, y) ≤ r} be the (closed) ball of radius r centered at x. Let

Bopen(x, r) = {y : d(x, y) ≤ r} be the corresponding open ball. We use ALG to denote the

total cost of our algorithm, ALGtime to refer to the time cost, and ALGdist to refer to the

distance cost.

The key to the analysis is the following definition

Definition 3.6.1 (rx). Define rx as the smallest r for which the following inequality is true:

1

λpB(x,r)

≤ r, where pB(x,r) =

∫
z∈B(x,r)

f(z)dz

Since the left hand side decreases as right hand side increases, they must cross, and thus

rx is well-defined.

44

Notice therefore that

λpB(x,rx) ≥
1

rx

and

λpBopen(x,rx) ≤
1

rx
, where pBopen(x,rx) =

∫
z∈Bopen(x,rx)

f(z)dz

.

Observe that 1/λpB(x,r) is the expected time to an arrival in B(x, r). This observation

leads us to our two key lemmas. Suppose a request appears at x. With constant probability,

another request does not appear in Bopen(x, rx) for at least rx time, so any algorithm will

incur Ω(rx) cost. On the other hand, our ball growing algorithm will expect to pay only

O(rx) to match a request at x. We formalize these observations in the next two lemmas.

Lemma 3.6.2. ALG ≤ 4
∫ T
τ=0

∫
x
λf(x)rx dx dτ

Proof. Observe that the distance cost for any request matched in ball growing is always at

most the time cost of matching that request. We claim that the appearance of a new request

inside B(x, rx) at least rx time units after the request at x appears guarantees the original

request will be matched. Indeed, by then if the request has not been match, its ball certainly

contains the point where the new request appears. Thus the request at x will be matched,

at the latest, the next time after t + rx that a new request appears in B(x, rx) Observe

that the time to a new request appearing in B(x, rx) is an exponential random variable with

parameter λpB(x,rx) ≥ 1/rx. We thus can bound the expected cost to ALGtime as follows:

ALGtime ≤
∫ T

τ=0

∫
x

λf(x)

∫ ∞
0

(t+ rx)
1

rx
e−t/rxdt dx dτ,

=

∫ T

τ=0

∫
x

λf(x)

(∫ ∞
0

t
1

rx
e−t/rx dt+

∫ ∞
0

e−t/rx dt

)
dx dτ,

≤
∫ T

τ=0

∫
x

λf(x)2rx dx dτ.

where the last inequality uses that the first integral in parentheses is the expectation of the

45

time for an arrival inside B(x, rx), and the second integral is rx times the integral of the pdf

of an exponential.

Doubling ALGtime we have the required bound on ALG.

Lemma 3.6.3. OPT ≥ e−2
∫ T
τ=0

∫
x
λf(x)rx dx dτ,

Proof. We now lower bound OPT. Suppose a new request appears at x at time τ . We show

that with constant probability there is no other request that OPT could match x with which

does not incur at least rx cost to OPT.

Let αx(τ) be the probability there is no other arrival within Bopen(x, rx) during the time

window [τ − rx, τ + rx]. For any such request, OPT must incur rx cost in the matching, thus

we have:

OPT ≥
∫ T

τ=0

∫
x

λf(x)rxαx(τ) dx dτ,

Finally, observe that

αx(τ) ≥ 1−
∫ τ+rx

τ

1

rx
e−t/rx dt−

∫ τ

τ−rx

1

rx
e−t/rx dt = 1−

∫ 2rx

0

1

rx
e−t/rx dt = e−2.

Combining Lemma 3.6.2 and Lemma 3.6.3 we immediately have

Theorem 3.6.4. In our stochastic setting, ball growing is an O(1)-competitive algorithm.

Remark 3.6.5. The ball-growing algorithm does not require advance knowledge of the un-

derlying metric space. It also does not require knowledge of the probability distribution from

which the requests are drawn.

3.7 Our Initial Work – Adversarial Setting

We now consider an adversarial setting, where the requests are chosen by an (oblivious)

adversary not drawn from a probability distribution. Following much of the prior work on

46

this problem, we assume that the underlying metric space (X , d) is finite and known in

advance.

Our analysis is very similar to the analysis of Azar et al. [ACK17]. Where possible,

we have adopted their notation and the structure of their proof. We adapt ball growing to

match the best-known performance for adversarial instances for finite metric spaces. As with

[ACK17], embed the metric space into an HST of height O(log n).

We need to carefully define what balls mean in our new context, and how they should

grow. Every request grows a ball “up” the tree (despite being a discrete metric, we think

of balls as growing continuously along edges, but only growing toward the root, not back

down other branches of the tree). Let TB denote the subtree rooted at the vertex that the

boundary of B most recently grew past. We say a ball B′ is “inside” a ball B if the boundary

of B′ is inside TB or if the boundaries of B′ and B are on the same edge and B is no higher

than B′ on that edge. At each time instant t and for each request r, if the number of balls

inside Br (including Br itself) is odd, then let r’s ball grow at a unit rate. Otherwise Br is

fixed.

In subsection 3.7.1 we reduce to MPMD on certain tree metrics. We then describe the

“Odd Ball Growing Algorithm” on (arbitrary) tree metrics in subsection 3.7.2. Finally in

subsection 3.7.3, we analyze ball growing on tree metrics and prove the following theorem:

Theorem 3.7.1. Odd Ball Growing is an expected-O(log n) competitive algorithm on n-point

metric spaces in the adversarial setting.

3.7.1 Reduction to Tree Metrics

Prior work in this setting has first embedded X into a distribution over hierarchically sep-

arated tree (HST), and used the structure of the HST to design the algorithm. We do the

same. Emek et al. [EKW16] make use of binary HSTs, while Azar et al. [ACK17] use

weighted HSTs to lessen the height of the trees (cf. [BBMN15]). We follow Azar et al. The

reader should see [WS11] for more on embedding into HSTs. For our purposes, the following

47

notion of HST suffices:

Let D be a distribution over HSTs. We say we have embedded (X , d) into D if:

1. for all T in the support of D, d′T (u, v) ≥ d(u, v) for all u, v ∈ X

2. ET∼D[d′T (u, v)] ≤ O(log n)d(u, v) for all u, v ∈ X .

Where d′T (u, v) is the distance in tree T between the leaves corresponding to u and v. Stan-

dard techniques (see e.g. [FRT04] or [WS11, Theorem 8.17]) allow us to draw from such a

distribution efficiently.

3.7.2 Algorithm

Our algorithm can be run on any rooted tree. By adding dummy leaves with edges of weight

0 to each internal vertex, we may assume without loss of generality that the requests appear

only at the leaves of the tree. Arbitrarily root the tree if it does not already have one, and

add an imaginary edge of infinite weight above the root.

Consider the following variant of ball-growing for HSTs. As before, each request grows

a ball. It starts at a leaf of the HST (corresponding to where the request appeared in the

original metric space). The boundary of the ball grows only “up” the tree (i.e. only away

from the leaves). Despite the underlying metric space being discrete, we will speak as though

the balls partially fill the edges of the tree as they grow. We will refer to the edge above

the vertex u as eu. Define Tu to be the subtree rooted at u along with the edge eu. For a

ball B whose boundary is on eu, we will write TB to refer to the subtree Tu. We say a ball

is “in” a subtree T ′ if the boundary of its ball is in T ′. Note that even if a request begins

inside some subtree, its may cease to be in that subtree (if it grows beyond the highest edge

of that subtree).

We now describe how the balls grow and how to match requests. We say a ball B1 is in

a ball B2 if (1) the boundaries are on the same edge and B2’s boundary is no higher than

48

B1. or (2) B2’s boundary is on another edge in TB1 . We will say “strictly inside B” if we

wish to exclude B itself.

At each time instant t and for each request r, if the number of balls in Br (including Br

itself) is odd, then let r’s ball grow at a unit rate. Otherwise Br is fixed.

We now describe how to match requests. We make explicit use of the edges of the tree

in our matching rules.

Rule 1 If the boundaries of two (adjacent) balls are on the same edge, and their growth

across that edge is within a factor of 2, then match them.

Rule 2 If there are four balls whose boundaries are on the same edge, then match the bottom

two balls to each other.

Rule 3 If there are two balls whose boundaries are on the (imagined) edge above the root,

match them.

The intuition behind the tree version of ball-growing is generally similar to the intuition

behind the basic version. We motivate some of the changes: the use of parity is inspired by

[ACK17]. Intuitively, as long as we have an odd number of pending requests in a subtree,

then either OPT does too (and it must be incurring waiting time in that subtree) or OPT

must have matched a request inside that subtree to a request outside that subtree (and thus

it incurred distance cost). Rule 2 makes our charging arguments easier, as it ensures there

will only ever be three balls growing on the same edge for more than an instant.

3.7.3 Analysis

In this section, we prove Theorem 3.7.1. In our intermediate technical results, we must

compare to an arbitrary solution matching SOL instead of OPT. We are interested in

comparing to the optimal algorithm for the original metric space, not the optimal matching

for the HST we embedded into. Since the embedding distorts the distance costs, the optimal

matching on the HST need not be the same as the one for the original metric space.

49

The main technical result is the next theorem.

Theorem 3.7.2. On any tree of height h, for any solution SOL, the ball growing algorithm

achieves:

ALG ≤ 75

2
(SOLdist + hSOLtime)

Our proof proceeds as follows: we first show that ALG is bounded by the sum of the radii

of the balls at the time they were matched. We then define a scheme to assign the growth of

the radii to the vertices of the tree (the “yu” and “zu” play that role – see Definition 3.7.5

and Definition 3.7.6) and a similar scheme from the time and distance costs of SOL to the

vertices (these are “xu” and “x′u” – see Definition 3.7.12). We then argue vertex by vertex

that yu + zu are at most a constant factor more than xu + x′u.

Let R be the set of all requests presented by the adversary, and let radiusr be the radius

of r’s ball at the time r was matched (in ALG). We begin by showing the final radii are a

good approximation to the cost of the algorithm.

Lemma 3.7.3. ALGtime ≤ 2 ·
∑

r∈R radiusr

Proof. We show that at any time at least half of the balls are growing. It suffices to find an

injective mapping, f(·) from non-growing balls into growing ones. Consider any not growing

ball, B. Since it is not growing, there must be an odd number of balls strictly inside B

(excluding B itself).

If there is another ball whose boundary is on the same edge as B but below B, define

f(B) to be the highest such ball. Otherwise, B is the lowest ball on its edge, and all other

balls inside of it are strictly inside one of child subtrees. Since there are an odd number total,

at least one of the child subtrees must have an odd number of balls. Continue recursing into

a subtree with an odd number of balls until there is a ball on the edge above the root of that

subtree. The top such ball, (call it B′) must have an even number of strictly balls inside it,

so it is growing. Set f(B) := B′.

Our mapping is indeed an injection, as the image of any B is a ball B′ where B′ is strictly

contained in B but such that there is no ball B′′ such that B′ is contained in B′′ and B is

50

not contained in B′′. So the preimage of any ball can be found by going up the tree until

one hits a non-growing ball.

Thus at least half of the balls are growing at any time step, and the claim follows.

Lemma 3.7.4. ALGdist ≤
∑

x∈R radiusx

Proof. To match two requests, their balls must have reached a common edge. The common

edge must be above the points’ least common ancestor, thus if u and v are matched radiusu+

radiusv ≥ d′T (u, v).

Our goal in the next step of the proof is to argue vertex by vertex about the costs of the

algorithm in comparison to SOL. In order to make this argument, we assign the radii growth

to the vertices of the tree. The following definitions of yu and zu will serve this purpose. In

the following, a “trip” across an edge is the time that the boundary of the ball was growing

on that edge. If a request is matched before it finishes growing across some edge, the trip is

only “partial” or “unfinished.” Intuitively, yu will represent the ball growth that corresponds

to completed trips across the edge eu (i.e., the edge in the tree above vertex u), while zu will

represent the partial trips.

Definition 3.7.5 (yu). Define yu for each vertex u as follows:

• If u is the root, let yu be 0.

• Otherwise, let yu be the growth of all completed trips across eu (with no contribution

from unfinished trips)

Note that if k balls complete a trip across eu then yu is exactly k times the weight of eu.

We define the zu to handle “partial” trips.

Definition 3.7.6 (zu). Define zu for each vertex u as follows:

• If u is the root, let zu be the total growth across eu

51

• Otherwise, every time a ball is matched on eu by Rule 2 increase zu by the growth of

the top of the two matched balls on eu.

Remark 3.7.7. The exact definition of zu may seem strange – our goal is to separate the

arguments about rule 2 from the rest of the argument. After showing Lemma 3.7.11, we will

be able to focus only on edges matched according to rules 1 and 3.

Before we begin the actual analysis, we will make a few simple observations about the

algorithm.

Observation 3.7.8. By Rule 1, a ball never “passes” another.

Observation 3.7.9. Balls must be on the same edge, with no balls between them, to be

matched.

This observation may not be obvious for Rule 1. Suppose B1 and B2 can be matched

according to Rule 1. A hypothetical ball between them would have growth much less than

a factor 2 away from at least one of B1 and B2. Regardless of how they were growing, it

would have been possible to match the middle ball to one of the others a small time earlier,

so there cannot be a ball between B1 and B2.

Observation 3.7.10. Once a ball becomes the top one on its edge, it will continue to be the

top ball on its edge until it is matched by Rule 1 or it grows beyond the edge.

With these observations in mind, we can proceed with our proof. We begin by showing

the sum yu + zu does actually correspond closely with
∑

x∈r radiusx:

Lemma 3.7.11.
∑

u∈T yu + zu ≤
∑

x∈R radiusx ≤
5
2

∑
u∈T (yu + zu)

Proof. The first inequality follows immediately from the definitions. For the second inequal-

ity, we have not accounted for growth caused by balls matched according to Rule 2, nor for

the “bottom” ball when we match according to Rule 1.

By Rule 2, no edge ever has 4 balls growing across it (when the fourth appears it is

immediately matched), thus when we match according to Rule 2, there is only one ball

52

that has grown across eu that we must account for. Call this ball we must account for B3

(because it is the third on the edge). Consider B1, the top ball on eu when we match B3. By

Observation 3.7.10, B1 will increase either zu or yu. Charge the growth of B3 on eu to the

increase caused by the B1. Observe that whenever B3 was growing B1 was too (since there

is one ball between them). Thus each ball is responsible for at most twice its own growth in

this paragraph.

The only other growth we have not accounted for is the growth by the second ball matched

according to Rule 1. Every such ball has at most half as much growth across eu as the ball

it is matched to.

Thus each ball is responsible for at most 2.5 times its own growth (its own, its match’s

and balls matched by Rule 2 while it is the top ball).

Definition 3.7.12 (xu, x
′
u). Let xu be the time cost incurred by SOL by all requests in the

subtree rooted at u.

Let x′u be the distance cost incurred by SOL for using the edge above u.

Observe that the x′u values exactly split up SOLdist, while the xu overestimate SOLtime by

up to a factor of the height of the tree (since a single request could be the only one pending

but cause all ancestors in the tree to have their xu increase).

Lemma 3.7.13. For all u, yu ≤ 3(xu + x′u)

Proof. If u is the root, yu is 0, so the claim holds. Assume u is not the root.

By definition, yu only increases on a complete trip across eu. We divide time into phases.

We start the first phase when the algorithm starts. Every time a ball finishes growing across

eu, end the current phase. Consider only completed phases (i.e. if the algorithm ends before

a phase ends, ignore the final partial phase). Observe that yu is exactly the number of

completed phases times w(eu), the weight of edge eu in the tree metric.

We first argue assuming that there are at least 2 phases. We compare the following

parities: Let αu be the parity of the number of balls in Tu in our algorithm and let βu be

53

the number of unmatched requests for vertices in Tu in SOL. Note the asymmetry of this

definition – in SOL we count requests (as SOL may not operate by growing balls) and a

request only ceases to be counted if it is matched. For ALG a ball will cease to be counted

if it grows past eu (or if it is matched).

Observe that αu flips exactly when

(α1) A ball finishes growing across eu.

(α2) A new request appears at a leaf in Tu.

and βu flips exactly when

(β1) SOL matches a request pending at a leaf in Tu to a request pending outside Tu.

(β2) A new request appears at a leaf in Tu.

Now consider two consecutive phases. Observe that if αu and βu are equal, they become

unequal if and only if events α1 or β1 happen. If event β1 occurs, then that match causes

x′u to increase by w(eu). Our two consecutive phases increase yu by 2w(eu); charge the full

increase to the change in x′u. Otherwise, β1 does not happen. α1 happens exactly between

the two phases, so in (exactly) one of the two phases αu = βu. During that phase, whenever

the ball was growing, αu was odd, and therefore βu was also odd and xu increased by at least

w(eu). Charge both increases of yu to that change.

Repeat this argument across all pairs of phases. If the total number of phases is odd,

charge the last phase to the most recent pair. If there are p phases, we have at least p/3

pairs, so we have yu ≤ 3(xu + x′u).

We now consider the cases where there is at most one completed phase. If there are no

completed phases, then yu is 0 and the claim follows. If the number of completed phases is

exactly one, we can still charge to xu and x′u. Indeed, let B be the ball that finished growing

across eu. Note that αu and βu are equal at time t = 0. If SOL uses eu to match at any time

in the course of the algorithm, we may charge to x′u. Otherwise, αu and βu are equal until B

54

finishes its trip across eu. Since B grows across eu when αu is odd, the time it grew across

u is w(eu) time where βu was also odd, and we have yu ≤ xu + x′u.

We now turn to bounding zu. We use a parity argument similar to Lemma 3.7.13, though

the definitions are slightly more involved.

Lemma 3.7.14. For all u, zu ≤ 2(xu + x′u)

Proof. If u is the root, observe that a ball growing across eu has all other balls in the algorithm

inside of it. Thus it grows if and only if the total number of pending requests for OPT is

odd. The parity of the number of pending requests in SOL is the same, so whenever zu is

increasing, xu is increasing as well, and we have zu ≤ xu.

Now suppose u is not the root. We again divide time into phases. End a phase whenever

balls are matched on eu according to Rule 1. Now consider each phase. We again define an

α and β. Let B be the top ball which is matched to end this phase, and B′ the bottom ball

matched to end this phase. Let αu be the parity of the number of balls in B (including B

itself). Let βu be the parity of the number of pending requests in Tu in OPT.

Note that the definition of αu is different in this proof from the proof of Lemma 3.7.13.

We again consider when αu and βu change relative to each other. With the change in the

definition, the only possible way for αu and βu to change relative to each other is for SOL

to match a request in Tu to outside of Tu.
7

We now argue in a single phase. In a given phase, if SOL used eu to match during this

phase, then x′u increased by w(eu), which is at least the increase to zu in this phase. If SOL

did not use eu, then we know that αu and βu did not change relative to each other for the

entire phase. If they were always equal, then xu increased whenever B grew. Otherwise,

xu increased whenever B′ grew. In either case, since we only match when B and B′ have

growth within a factor 2, xu increased by at least half of the increase to zu in this phase.

In either case we have have the claim.

7Unlike in the previous proof, we no longer need worry about B growing beyond eu, since we know it
will be matched before it leaves the edge

55

We can now prove the main technical result

Proof of Theorem 3.7.2. ALG ≤ 3
∑

x∈R radiusx ≤ 15
2

∑
u∈T yu + zu ≤ 75

2

∑
u∈T xu + x′u

where the first inequality is by Lemma 3.7.3 and Lemma 3.7.4 and the second follows from

Lemma 3.7.13 and Lemma 3.7.14. Recall that we defined x′u to be the distance cost incurred

by SOL for using the edge above u, and xu to be time that the subtree rooted at u has an

odd number of requests. Summing over all u, x′u becomes exactly SOLdist. If we sum over

xu, then at each moment, any request may be causing all of its ancestors u to increase their

xu, so the time cost of SOL could be a factor h (the height of the tree) less than xu, and we

have: ALG ≤ 75
2

∑
u∈T xu + x′u ≤ 75

2
(SOLdist + hSOLtime)

We now show that our main result follows from Theorem 3.7.2

Proof of Theorem 3.7.1. Consider an arbitrary metric space (X , d) on n points.

We can embed X in a distribution D over weighted HSTs. Our algorithm draws a tree

according to D then runs the odd-ball-growing algorithm on that HST. By Theorem 3.7.2,

in the tree metric, ALG ≤ SOLdist + O(log n)SOLtime. The conversion to tree metric alters

the distance cost, but by point 2 of the HST definition, we have:

ED [ALG] ≤ O(log n)SOLdist +O(log n)SOLtime ≤ O(log n)SOL

as required.

3.7.4 Comparison to Azar et al.

We have followed the argument of Azar et al. very closely. From the overwhelming similarity

in the proofs, one might believe that our algorithm and theirs are fundamentally the same;

this is not the case. Their intuitions are very similar, but they operate differently. Consider

the example in subsection 3.2.2. Azar et al. will match the requests at the same points,

paying 1 − ε toward the edges until it pays for all the edges to the least common ancestor

of the two points. It will then match two distant requests. From then it will be able to

56

match the points at time ε.8 Observe that the key to the algorithm getting good behavior

is memory. Each time the algorithm is “tricked” it buys more of the edges above it. Even

if no requests are pending (as will happen frequently), the algorithm’s state (via the edges)

ensures it cannot be tricked indefinitely.

Our algorithm behaves quite differently. We do not keep global memory. If no requests

are pending, our algorithm records no state. Thus we must handle the example in subsec-

tion 3.2.2 differently. Observe that our algorithm is not “jumpy,” i.e. we can have multiple

requests pending at the same leaf without matching them. Indeed, on the example from

subsection 3.2.2, we will grow balls for the first requests to radius 1 − ε before the second

set of requests appear. By the time the third set of requests appear, the first set of balls (at

radius 1− ε) will still be much larger than the radii of the second set (only ε), so we do not

match the first pairs by location as Azar et al. do. We will pair the second set with the third

set. Allowing the algorithm to run, we will match the first pair of requests to each other,

and end up with the same pairs as OPT (though incurring more waiting time).

We include this as only an example of the differences in the algorithms; despite the surface

similarities they are truly different.

3.8 Open Problems

We now discuss a few open problems and avenues for how they might be addressed.

3.8.1 MPMD

In the stochastic setting, the most obvious avenues for open questions are to generalize our

models. A first step would be to argue what happens if requests stop appearing (our current

model assumes an infinite time horizon). One approach here would be to try to use the

diameter of the space to bound the costs of whatever requests are pending after the final

request has appeared. Other possibilities in the stochastic setting include allowing λ, the

8As it matches the points at time difference ε, it also pays ε and will eventually buy the edges again and
cycle back and forth. The behavior is still good because it matches far more at time ε.

57

frequency at which requests appear, to change. We have initial results assuming λ is evolving

according to Brownian motion. In the extreme case, one could imagine a problem where an

adversary controlled the times when requests appeared, but not their locations.

In adversarial settings there are a few obvious open questions. The most obvious is to

close the gap between the upper and lower bounds on (randomized) algorithm performance in

terms of n. The gap (betweenO(log n) of [ACK17] and Ω
(

logn
log logn

)
of [AAC+17]) is extremely

small, but it is still super-constant asymptotically. It’s worth noting that achieving a o(log n)-

competitive algorithm would require a significant change in approach. It is already known

that there are metric spaces which require Ω(log n) distortion [Bar96].

On the deterministic side, we still have substantial gaps. As far as we know, an algorithm

could achieve poly-logarithmic performance, which is very far from the O(m0.59) of the best

upper bound. Again, the barrier for improving the algorithm is well-understood. MPMD

algorithms in the literature tend to be local. Each request looks in an (often expanding)

neighborhood around it to find its match, but the deterministic algorithms do not try to

maintain any “global state” – they make only local decisions. But local decision-making can

be tricked, as we saw with the example in subsection 3.2.1. Indeed, the competitive ratio of

O(m0.59) matches the ratio a greedy algorithm gets on this example exactly.

3.8.2 Extensions

For extensions of MPMD, we can take each of the questions we’ve already asked, and ask

them again for MBPMD. In addition there are some questions unique to the extensions: In

particular, we have no initial results for MBPMD in the stochastic setting, and it would be

a good first step to just see if our ball growing algorithm works in MBPMD – essentially the

only difference between the two settings is that balls need not be disjoint in the bipartite

setting (but this exact difficulty did not prevent [AJF18] from adapting their ball growing

in the adversarial setting, so we should be very optimistic). It would also be interesting to

try to adapt odd ball growing to the bipartite setting.

Finally, we could also examine further extensions of different cost functions. An obvious

58

extension is to try to adapt the results on convex time functions to tree metrics. If they can

be extended then HST embedding tricks are likely to give us good results on general metric

spaces. Another extension would be to examine concave time functions.

59

Chapter 4

TOURNAMENT DESIGN: CREATING GOOD MATCHUPS IN
SPORTS

A tournament rule is a mechanism for taking results of games played between n teams and

deciding a (single) winner of the tournament. Recent work has considered manipulability of

these tournaments. A major impetus for much of this recent work was an incident in the 2012

Olympic Badminton Tournament where both teams playing in a match were incentivized to

lose that match (and attempted to do so).

In 2016, the tournament was redesigned, with the stated goal of eliminating misaligned in-

centives; we show the redesign failed in this goal. We then describe a minimally-manipulable

tournament rule which could be reasonably implemented, while maintaining many of the sub-

tler features of the current tournament that a designer would want. Proving results about

the manipulability of our design requires extending definitions to a setting where teams may

play each other more than once with different results. Finally, we demonstrate that explicitly

considering cases with small n can lead to different, practical results than would be predicted

by only considering the case of arbitrarily large n.

4.1 Introduction

The impetus for this work (and much of the recent tournament design work) was dramatic

evidence that a commonly-used tournament design does not have properly-aligned incen-

tives. At the 2012 Summer Olympics, in two badminton matches both teams tried to lose

the match they were playing. The bizarre incident generated significant news coverage, as

the teams were actually attempting to increase their chances of winning a gold medal [Bel].

The tournament organizers disqualified all of the competitors for “not using one’s best efforts

60

to win a match” and “conducting oneself in a manner that is clearly abusive or detrimental

to the sport” [Kel]. The decision was widely (though not unanimously) criticized by sports

commentators, who placed the blame on the tournament design (producing incentives in-

compatible with attempting to win every match) rather than a supposed moral failing of the

players [Bor, Lei]. Regardless of the blame, the way to move forward is clear – it is the job

of the tournament designer to align incentives.

As a result of the furor, the design was changed for the 2016 Olympics, with the goal of

ensuring the incident would not be repeated. Indeed, on announcing the change, the president

of the Badminton World Federation said the redesign “will eliminate any player’s thoughts

about actively trying to lose a match or matches, irrespective of other match results” and

that they had “ensure[d] such a regrettable spectacle is never witnessed in badminton again”

[Ber].

This goal was not met. The redesigned tournament still suffers from at least two different

scenarios which could incentivize competitors to lose matches, as we show in subsection 4.2.3.

The main contributions of this chapter are to demonstrate this fact and to suggest an alter-

native tournament which (under some weak assumptions) provably will never incentivize a

team to lose a match, while still maintaining many of the subtler tournament features that

the Olympic designers may have considered when choosing their designs.

4.1.1 Technical Background and Related Work

This chapter is part of a line of work that has sought to design tournaments that maintain

reasonable methods of choosing a winner while minimizing the ability of players to manipulate

the results. The fundamental object of these papers is a tournament rule. A tournament

rule is a function that maps the results of n teams playing all possible pairwise matches to

a (possibly randomized) champion of the competition.1

Previous work has shown tradeoffs between the reasonableness of a tournament and its

1In subsection 4.1.3 we will extend these definitions to a more general setting where teams may play each
other more than once.

61

vulnerability to manipulation. We begin with a recap of the most common criteria for a

good tournament.

Definition 4.1.1 (Condorcet-Consistency). A tournament rule is Condorcet-consistent

if a team which wins all of its matches is declared the champion with probability 1.

Let T be a tournament, i.e., the results for all matches played. For a participant i, let

ri(T) be the probability2 that i becomes the champion under the events of T .

Definition 4.1.2. A tournament rule is monotone if for every player i, and every tour-

nament T , if i intentionally losing a match would result in the tournament T ′ then ri(T) ≥

ri(T
′).

That is, a participant cannot increase their chances of winning the tournament by losing.

Definition 4.1.3 (SNM). A rule is said to be k strongly non-manipulable with pa-

rameter α (k-SNM-α) if no coalition of k players can increase their combined probability

of winning the tournament by α by manipulating the results of the games between them.

Altman and Kleinberg show it is impossible for a tournament to be strongly non-manipulable

(i.e. k-SNM-α for all k and α) and Condorcet-consistent [AK10]. With this impossibility

result, it is reasonable to try to weaken one of the two criteria. One possible weakening

of Condorcet-consistency is non-imposition, which requires that for each team there is a

set of results (across all matches) that will result in it becoming the champion. As long

as the tournament does not have exactly 3 competitors, Altman, Procaccia, and Tennen-

holtz show there exists a tournament rule that is pairwise non-manipulable (i.e., 2-SNM-α

for all α), non-imposing, and monotone [APT09]. However, this tournament design is not

Condorcet-consistent, which makes it unsuitable for use in sports tournaments.

Instead of weakening Condorcet-consistency, one can weaken non-manipulability. Schnei-

der, Schvartzman, and Weinberg show that a tournament can be Condorcet-consistent and

2probability over any randomness in the tournament rule.

62

2-SNM-1/3 (and that 1/3 is the best possible α for a Condorcet-consistent tournament)

[SSW17].

A common pattern in real-world tournaments is to involve multiple stages. A very com-

mon tournament design (used in Olympic badminton as well as other Olympic sports and

the soccer World Cup) begins with a “round robin” stage, where teams are partitioned into

groups of 4 and play every other team in their group. The first and second place teams

of each pool advance to the next stage. This multi-stage process can lead to manipulation

as demonstrated by the 2012 Olympics badminton scandal [Kel12]. Theoretical work has

also analyzed multi-stage tournaments. Pauly proves it is impossible, under a number of

reasonable constraints, to design a monotone tournament where the first round is pool play

with multiple teams advancing [Pau14]. One of the constraints Pauly imposes is that the

tournament be completely deterministic, so this result does not directly address the 2016

redesign. Using a different notion of incentive-compatibility, Vong shows that any combina-

tion of group-play stages is incentive-compatible under their model if and only if each group

allows only one team to advance [Von17].3 Neither of these results applies directly to the

redesigned Olympic badminton tournament.

In addition to the more theoretical work above, there is a more recent line or work

discovering vulnerabilities in other real-world tournaments. Csato has found potential ma-

nipulations in both the 2018 European World Cup qualification [Csa17a] and the European

Men’s Handball Championship [Csa17b]. Csato also proposes practical modifications to these

tournaments, but the modifications are not sufficient for the badminton case [Csa18].4

3Vong assumes that all results (if played with full-effort) are known to competitors in advance. This
assumption is not particularly realistic, and allows for a very restrictive definition of IC (intuitively they
require that every time teams are “ranked” [to move from one stage to the next] that the true ranking is
a Nash equilibrium). Vong’s result does not directly address randomized designs, nor any uncertainty in
the result.

4Csato’s work considers teams manipulating group play to affect whether they advance out of group play.
The primary issue in the badminton context is not whether the manipulating team advances, but whether
they improve their chances in the next round.

63

4.1.2 Our Contribution

This paper is meant to be a bridge between the two lines of work above. The theoretical

work has produced very interesting impossibility (and occasionally possibility) results, but

often focuses on results that hold for all n. Meanwhile the applied work shows that real-

world tournament designers have not actually applied these results, and continue to use

non-monotone tournaments. Our aim is to find a design which is as easy to use as possible

for real-world designers, while still provably having the incentive-compatibility properties

theoreticians know are necessary.

Our contributions are as follows: first we demonstrate that the changes made in 2016 were

insufficient. Indeed, the redesigned tournament is still vulnerable to at least two different

scenarios which would incentivize a team to lose. Second we design a tournament which is

monotone (and therefore not vulnerable to these kinds of manipulation). We are not the

first to design such a tournament, but we argue (in subsection 4.3.3) that our design has

practical advantages that make it more likely to be utilized than previous suggestions.

On a technical level, we have the following contributions. We describe a new mathematical

model for tournaments that allows teams to play each other more than once with different

results, (which we have not found in the literature, despite many important tournaments

having this feature) and thus extend definitions to this new setting. All prior proofs of

monotonicity have been trivial. A key feature of our design is that teams are not eliminated

on their first loss, we thus require a non-trivial proof of monotonicity. While our proof is

not complicated, we believe this is a key step to designing tournaments that designers will

use in the real-world (as we argue in subsection 4.3.3). Finally, our work demonstrates the

importance of explicitly considering small n. Prior theoretical work often proves results for

general n, we will see that our tournament design has a subroutine which is not incentive

compatible for arbitrary n, but is for n = 4, and that this is sufficient for our real-world

needs.

64

4.1.3 Model and other Preliminaries

We consider two models for the results of games:

1. Whenever two teams play (intending to win) the same team always wins.

2. Whenever teams i and j play (intending to win) an independent Bernoulli random

variable with parameter pij is drawn to decide who wins. The parameter pij may differ

between pairs, but does not change if i and j repeat a matchup.

Model 1 is commonly used in the literature, but we will see (e.g. in Theorem 4.3.1) that it

is insufficient for tournaments where teams are likely to meet more than once. We therefore

introduce Model 2. Our model is still a simplification of the real-world (for example, teams

may learn about each other in their first match against each other and make adjustments for

their rematch, altering the probability of winning), but our assumptions are fairly minimal.

More practically, recall that our goal is to understand whether teams would intentionally lose

games, when those teams know that previous teams that did so were disqualified from the

tournament – our model does not need to be perfect, just accurate enough that the threat

of disqualification will overwhelm any lower-order effects we have not considered.

We will need the following basic tournament designs repeatedly, so we introduce them

here: a round robin tournament involves every team playing every other team once, and

ranking the teams based on the number of wins. This design is often used as a subtournament,

with teams divided into groups and playing the round robin design only within their groups,

with some teams eliminated and others advancing to the next stage of the tournament. A

single elimination tournament (or SET), sometimes called a “knockout” tournament, is

a tournament on 2i teams. At each stage, the remaining teams are paired and each plays

one game; the teams that win advance to the next round and the losers are eliminated. One

can view this tournament as a binary tree, where the leaves are the teams, and each internal

node is a match to be played (between the teams in its child nodes).

65

4.2 2012 Badminton Incident and Olympics Response

In this section we discuss: the 2012 incident, the modifications made for the 2016 tournament,

and show that the modifications were insufficient to actually make the tournament monotone.

4.2.1 2012 Badminton Incident

The 2012 tournament utilized a common group-play-then-knockout format. The competitors

were divided into “groups” of four teams each. Each group plays a round robin tournament,

where the top two teams in each group5 advance to a “knockout” round (i.e. a single elimi-

nation tournament). In the 2012 games, the position of teams in the SET was determined by

finish in the groups (and known in advance to the competitors). Entering the final matches

of group play, prior results led to the scenario in Figure 4.1. The final match of Group A

(between X and Y) is the one we will study, which both teams attempted to lose.

Notice that the mapping of teams to their location in the knockout bracket is fixed by the

results. The final match in Group A was between teams which were guaranteed to advance.

The only stakes were who the teams would play in the knockout. Moreover, because the

matches were played at different times, the identities of D1 and D2 (the teams advancing

from group D) were known as well. Based on known team strengths, the most likely results

of games among some teams in the knockout are those shown in Figure 4.1.

Looking at the bracket, (and assuming that C1 and C2 will be fairly comparable) the

incentives for X and Y are clear, but bizarre. The goal of each team would be to avoid team

D2 as long as possible (there is a small chance of an upset in any game; the further from D2

in the bracket, the better the chances of an upset happening before having to play them).6

Thus the teams would prefer to be A2, and thus want to lose their final match.

5That is the two who won the most games, with ties broken by measures of margin of victory.

6Under normal circumstances, the seeding was supposed to incentivize winning the group, but an upset
in Group D caused the best team in D to be seeded as the second place team, and reverse the incentives.

66

Group A
X 2-0

Y 2-0

Team 3 1-2

Team 4 0-3

D2

D1

A1

A2

C2

C1

B2

B1

D1

𝑌𝑋

D2

Figure 4.1: Left: The state of Group A before X and Y played their match. Middle: The

assignments of teams that advance from the groups to the positions in the knockout. Right:

The likely results of matches between X, Y and the teams advancing from Group D, an edge

from u to v means it would be expected that u wins when playing v.

4.2.2 Olympics Response

The Badminton World Federation (BWF) responded to the 2012 scandal by altering the

tournament. The change adopted for 2016 was to randomize the draw for the knockout

stage with the stated goal that the secondary draw would “eliminate any player’s thoughts

about actively trying to lose a match or matches, irrespective of other match results” [Ber].

Below, we give a formal mathematical statement of the tournament design used in 2016,

and show that this game format does not solve the problems in the old game format in that

it is not monotone. The official description of the rules for 2016 and 2020 can be found at

[dra, Section 5.4.1.2].7

The competition is played in two stages— a group play stage followed by a knockout

stage.

7There is at least one potential ambiguity in the official statement – exactly how far away teams from
the same group must be placed. The actual draws produced in 2016 makes the interpretation we give the
only possible one.

67

A1

D1

1

C1/B1

B1/C1

0

2

3

5

4

6

7

Figure 4.2: The knockout seeding for 2016 and 2012.

During group play, we maintain a scoreboard allowing us to order the teams according

to their performance within the groups. To transition to the knockout stage, we pick two

top teams from each group’s ordering. Call these teams {A1, A2, B1, B2, C1, C2, D1, D2},

where the letters indicate group and the number indicates their finish.

To define the knockout stage, number the positions of the bracket 0, 1, . . . , 7 from top to

bottom (see Figure 4.2).

Place A1 in position 0 and B1 in position 4. Now place C1 and D1 into positions 2 and

6, deciding which goes where uniformly at random. Finally, to place A2, B2, C2, D2 in the

remaining spots: choose an assignment uniformly at random from among those which have

no teams from the same group playing each other in the first round.

The winner of knockout stage is declared the winner of the competition. This finishes

the definition of the new Olympic format.

4.2.3 Flaws in the format

We now show that the redesign failed, and that the 2016 design is still not monotone, and

indeed, that a repeat of the 2012 incident is a real possibility. We begin with a description

of two known methods of manipulation, and show that each is still possible. The heart of

68

each of these examples is not novel – both are adapted from examples in Pauly’s paper on

the original incident [Pau14].

Pauly’s results do not apply directly to the redesign (in particular, all designs discussed

in the paper are deterministic). We have not seen any commentary in the literature on the

redesign, so to the best of our knowledge, this observation is novel.

We use the notation φ(X) to represent the ordered pair of teams advancing from group

X . In the first type of manipulation, a team can alter which team advances with them into

the knockout stage of the tournament in order to improve their own chances of winning.

Example 4.2.1. We show that a team (A) can manipulate who advances out of their group

to increase their chances of avoiding a superior team (X) in the knockout. Let A,B,C,D be

in group A and X be in group D. Consider a tournament with the following relationships.

• A beats all other teams (including teams in other groups) except X

• X beats all other teams except C

• C beats D, X, and all teams that advance to the knockout except A

• B beats C

• D beats B

Consider Group A with players A,B,C,D. If all teams play at full-strength, A wins the

group, and a tie-breaking rule will choose the second-place team. Suppose that rule picks B.

Team X will win group D, so by the relationships above, X and A will advance to the finals,

where X becomes champion.

Now suppose A throws its game to C so that after group play. φA = (A,C).8 A and X

are now forced to be on opposite sides of the bracket. The second-place teams will be placed

8A tie-breaker will decide the rankings of A and C relative to each other. We assume A can manipulate
the results to win the tie-breaker as well. Since the tiebreakers are various ways of measuring margin of
victory, A will be able to manage this goal if it wins its first two matches by a sufficient margin.

69

so that teams from the same group do not play in the first round. With probability 2/3, C

will be placed in the bracket such that it will meet X before the finals, allowing A to become

champion. Thus, A can improve its probability of becoming champion by 2/3 by intentionally

losing a match.

In the second type of manipulation, a team can intentionally qualify second in the group

in order to improve their probability of winning the competition.

Example 4.2.2. We show team A can manipulate seeding to increase its chances of becoming

champion. Suppose A would win all matches in group A if playing at full strength. We

use φ(X) to denote the (ordered) pair of teams advancing out of group X . Suppose that

φ(B) = (C,D), φ(C) = (E,F), and φ(D) = (G,H). Group A has one game left between A and

B such that if A wins, φ(A) = (A,B); otherwise φ(A) = (B,A). Now consider a tournament

graph with the following characteristics:

• A beats {B,C,E,G} and loses to {D,F,H},

• B beats {D,F,H},

• For i ∈ {B, C,D} and j ∈ {A,B, C,D}, φ(i)
1 beats φ

(j)
2 ,

• All other teams lose to the qualifying teams for knockout phase.

If A decides to win against B in the above mentioned game, thereby qualifying as φ(A) =

(A,B), then by the seeding rules, A would play one of {D,F,H} in the first round of the

knockout causing A to be eliminated. On the other hand, if A threw the match in question,

then it qualifies as φ(A) = (B,A). A will play one of {C,E,G} in the first round of the

knockout and win. Furthermore, all of {D,F,H} will be eliminated after the first round

since they will be playing a player that can beat them. This implies that A can beat any of

the teams remaining and will be the winner of the tournament.

70

We have made the situations above quite extreme to make them as simple as possible to

understand. However, these examples are quite robust to small changes in the design of the

tournament or in the results. For example, a common practical technique to minimize the

chances of these incidents is to have the final matches for all groups start at the same time

(the World Cup utilizes this technique, for example). The examples our robust to this change

– in Example 4.2.1, if X somehow comes in second in its group, A still benefits by bringing

C to the next round (though it is less likely that C will meet X in time). In Example 4.2.2,

A benefits as long as the majority of the groups come out as expected.

Extreme setups are not required to make a tournament non-monotone. Indeed, consider

the exact scenario from 2012, with an upset happening in group D, and the members of

group A (each with 2 wins and no losses) playing only to determine ranking. They will both

still want to lose. Note that the bracketing process does not treat groups equivalently – A1

and D1 are forced to be on opposite sides of the bracket. An A1 vs. D2 matchup would

happen in each round of the bracket with probability 1/3. On the other hand, A2 cannot

meet D2 in the first round, and meets it (or the team that beat it) in the second round with

probability only 1/6. The advantage has been slightly decreased (and made harder for non-

experts to recognize), but in the exact situation from 2012, there is still significant incentive

for teams to lose. The non-monotonicity of this tournament is not an esoteric matter only

for theoreticians, it is only a matter of time before teams are incentivized to lose again.

4.3 Double-Elimination Design

Having shown the first redesign failed, we now turn to how the BWF should redesign their

tournament. In this section we describe our alternative design, and prove that it has the

desired features. We will cover the practical benefits of this tournament in detail in subsec-

tion 4.3.3, but it is worth briefly describing why we felt the need to go beyond the designs

already in the literature. A (randomized) single elimination tournament (that is, making the

entire tournament a “knockout” phase) is known to be Condorcet-consistent, monotone, and

minimally manipulable (in the 2-SNM sense) [SSW17]. Despite these wonderful properties,

71

D

L2

A

W4

B

L3

L1

C

1

2

3

W1

W3

4

5
W5

6

W2

Figure 4.3: The bracket for a 4-team double elimination tournament. Games are numbered,

in red. The winner of game i is denoted by Wi and the loser by Li. Games 1,2, & 3 are the

“winners’ bracket”, 4 & 5 are the “losers’ bracket”, and 6 is the “final”

the BWF did not choose this design when they remade the tournament (and this decision

could not have been from ignorance of the design – a single elimination tournament was used

prior to 2012). Instead the designers chose to modify the two-stage system and preserve

group play. They must have seen a tremendous benefit to the group play to preserve it. The

primary benefit of group play is the guarantee of multiple matches for each team. In a single

elimination tournament, half of the teams play only one match (as they lose their first and

are immediately eliminated). With group play, every team is guaranteed three matches.9

We propose replacing the round robin competition in group play with a different tourna-

ment structure (still played in groups of 4). Our design is an altered knockout that adds a

second “losers’ bracket.”

A 4-team Double-Elimination Tournament (DET) has the following format (see Fig-

ure 4.3).

In the first round, team A plays team B, and C plays D. In the second-round the winners

9Though a team may be de facto eliminated after two matches, it will still play its third match (consider,
for example, teams 3 and 4 in Figure 4.1 after each losing to X and Y); every team is still “alive” after
their first match, though they may need games they do not play in to have a certain result to advance.

72

of round one play each other, and the losers play each other. After these games, some team

has lost two games and is eliminated, another has won two games and advances to the finals.

The two remaining teams (which have won one match and lost one match) play each other

in the third round, with the winner advancing to the finals and the loser being eliminated.

In the finals, the two remaining teams play each other a single time, with the winner being

the champion (regardless of who won if they played previously).10

Our overall tournament design is the following:11

Olympic Tournament Design

Phase 1: Divide the teams into groups of 4 (arbitrarily), and have each group perform a

4-team DET. The winner of each DET advances to the next phase.

Phase 2: Place the DET winners (arbitrarily, as long as placement does not depend on the

results of Phase 1) into a knockout bracket. The winner of the knockout bracket is the

champion.

4.3.1 Models

Recall we have two models for the outcomes of matches:

1. Whenever two teams play (intending to win) the same team always wins.

2. Whenever two teams play (intending to win) an independent random variable is drawn

to decide who wins. The distributions may differ between pairs, but is the same

distribution every time a given pair plays.

We start by showing why Model 1 is insufficient for understanding this tournament.

10A more common version of a double elimination tournament has the teams in the final play up to two
games, with a team being eliminated when it gets its second loss overall in the tournament. This design
is not monotone in general.

11In our design, we have tried to follow the current Olympic format as closely as possible, while ensuring
monotonicity. A more “obvious” use of our design would be using 4-team DET recursively; this would be
monotone, but requires more games than our proposed approach.

73

Theorem 4.3.1. The outcome of a 4-team-DET is equivalent to the outcome of a 4-team-

SET under Model 1.

Proof. Let A,B,C,D be the four teams under Model 1. Let x, y ∈ {A,B,C,D}, be the

teams that meet in the final round of the DET, where x and y come from the winners’

bracket and losers’ bracket respectively.

Note that the winners’ bracket of the DET (until the final round) has the same match-ups

as the SET. That is, the winner of the SET is x. We want to show x is also the DET’s winner.

Observe that it suffices to show x and y already met in the winners’ bracket. Indeed, in that

case, y must have lost to x. Thus, x will win again in the final and become the champion.

Suppose, for contradiction, that x and y have not met before the final round. Then y

must have lost to some other team, z, in the first round. Since x advances to the final round,

z must have entered the losers’ bracket, but this leads to a contradiction as z would have

eliminated y in game 5.

Thus x is DET’s winner as well.

In the real-world a double-elimination tournament may have a different outcome than a

single-elimination tournament (such tournaments are used in practice for exactly this reason),

so we need to introduce Model 2.

It will suffice to prove our results in Model 2, as Model 1 is just the special case where

each match is won by some team with probability 1.

4.3.2 Manipulability Results

We can now turn to proving our main result. Observe that to show monotonicity, it suffices to

argue that for every game, any team would prefer its situation after winning to its situation

after losing (since the probability of becoming champion when playing at full-strength is a

convex combination of the probability of becoming champion after winning or losing).

We start with the subtournaments. The key intuition for this proof is that a loss will

either eliminate a team or force them to win a superset of matches they would have played

74

had they won.

Theorem 4.3.2. Under Model 2, a 4-team DET is monotone.

Proof. Let A,B,C,D be the four teams in the tournament. By symmetry it suffices to show

monotonicity with respect to A.

Clearly, there is no benefit to losing if A is already in the loser’s bracket or in the finals

(as a loss causes the probability of winning the tournament to be 0). Thus it suffices to

consider whether A wants to lose in the first game (Game 1 in Figure 4.3) or in the second

round of the winners’ bracket (Game 3).

First we consider losing in Game 3. Without loss of generality, suppose A’s opponent in

Game 3 is C and B advanced out of Game 4 (the first game in the losers’ bracket). If A

loses, then it must beat both B and C to win the tournament. On the other hand if A wins,

it must beat only one of B or C to win the tournament. Thus it is no harder for A to win if

it advances to the finals.

We now consider the first game of the tournament. For any teams x, y let pxy be the

probability that x beats y when they both play at full strength.

If A loses the first game, it will have to beat every other team in turn to become champion,

which occurs with probability

pAB · pAC · pAD.

If A actually wins the first game, its probability of becoming champion is

pACpAx + (1− pAC)pAypAC ,

where x ∈ {B,C,D} is the team that advances out of the loser’s bracket if A wins game 3

and y ∈ {B,D} is the team that won game 4.

It suffices to show that

pAB · pAC · pAD ≤ pACpAx + (1− pAC)pAypAC .

75

Dividing through by pAC (if pAC is 0, A has no chance of becoming champion, so this division

is well-defined), it suffices to show

pAB · pAD ≤ pAx + (1− pAC)pAy.

If x is B or D then pAx alone is at least pABpAD. Otherwise, x is C, and we have:

pAx + (1− pAC)pAy = pAC + (1− pAC)pAy ≥ pACpAy + (1− pAC)pAy = pAy ≥ pABpAD

as required.

We get our main result almost immediately:

Theorem 4.3.3. The Olympic Tournament Design is monotone.

Proof. Phase 1 is monotone by Theorem 4.3.2. Phase 2 is inherently monotone since losing

a match results in elimination. Finally Phase 1 and Phase 2 are completely independent by

construction.

It is worth contrasting Theorem 4.3.2 with a result of Stanton and Williams. They define

a double elimination tournament on arbitrarily many teams and show the following theorem.

Theorem 4.3.4 ([SW13, Section 4.2]). Under Model 1, a 16-team DET is not monotone.

We note that there is no contradiction between these results – intuitively, a large double

elimination tournament is not monotone, because by strategically entering the losers’ bracket

one may be able to avoid meeting a superior opponent in the winners’ bracket and further-

more avoid them in the losers’ bracket as well (before hopefully advancing to the finals). A

four-team DET has no such possibility: there are simply not enough teams available to avoid

facing a team by going into the losers’ bracket.

We now briefly measure the quality of the Olympic Design with respect to other measures

in the literature. The most common alternative measure of strategy-proofness is 2-SNM-α.

76

Recall that this is a measurement of how significantly a pair of teams can increase their

combined probability (i.e. the sum of their individual probabilities) of becoming champion

by altering the results of the matches they play against each other. Consistent with previous

work on the topic, when considering randomized designs, we fix the pair which will attempt

to collude before revealing the randomness.

We call a 4-team DET “randomized” if the identities of A,B,C,D are selected uniformly

at random before the start of the tournament (define a “randomized-SET” analogously).

Theorem 4.3.5. Under Model 1, a randomized 4-team DET is 2-SNM-1/3.

Proof. Observe that there are 3 possible arrangements with equal probability: A could play

any of B,C, or D in the first round.

It suffices to show that if two players decide to collude, they cannot improve their com-

bined chance in arrangements where they do not play each other in the first round. Since

there are two such arrangements out of three for each pair, this shall prove the theorem.

Consider the arrangements where A is not playing B in the first round. We show that

there is no game in which they can alter the result to their combined benefit. First, note

that if A and B both end up in the losers bracket at the end of the first round, then collusion

does not benefit them. There is some team that can beat A and a different team that can

beat B. But A and B would have to play these opponents again before they can win the

tournament, so the combined probability of winning is zero with (or without) collusion.

With the exclusion of the above case, A and B can meet each other only in Game 3 or

in the final. Regardless of the result of Game 3, another team wins the tournament only

if they beat A and B once each (Game 3 only decides the order in which those games are

played). Thus manipulating the result does not increase their probability of winning. Finally,

manipulation in the final round is useless as one of them becomes champion regardless.

It follows from the above argument that A and B cannot improve their combined chances

by manipulating results unless they meet in the first round. This matchup occurs with

probability at most 1/3, giving the bound.

77

Note that 1/3 is the optimal α for size-2 coalitions among Condorcet-consistent tourna-

ments (under Model 1) [SSW17].

Combining with known results, we get that a randomized version of our Olympic Design

is optimal under Model 1.

Theorem 4.3.6. Under Model 1, a randomized Olympic DET Design is 2-SNM-1/3

Proof. Phase 1 is 2-SNM-1/3 by Theorem 4.3.5. Phase 2 is 2-SNM-1/3 by [SSW17, Theorem

3.3]. Since teams cannot play each other in both phases, the tournament overall is 2-SNM-

1/3.

Recall that Model 1 is not the best way to understand the how this tournament works in

the real-world (based on Theorem 4.3.1, for example), so we do not interpret this theorem

to mean there is no better tournament is possible. Indeed, under Model 2, we do not believe

the tournament is 2-SNM-1/3 (in Phase 1 both teams being in the losers’ bracket is not a

guarantee that the teams cannot win the tournament). Regardless, we do not believe this is

a practical threat to the tournament. It seems unlikely that Olympic athletes would form

coalitions, except between teams from the same country. The results above still holds if the

initial draw prevents teams from the same country from being placed in the same group (as

is currently required [dra, Rule 4.1]), and this would prevent collusion until at least Phase 2.

4.3.3 Practical Advantages

In addition to the theoretical benefits mentioned above, our proposed design offers several

practical benefits over its counterparts.

Firstly, recall from the beginning of section 4.3 that the BWF declined to use a single

elimination tournament (despite it being Condorcet-consistent, monotone and 2-SNM-1/3),

because most competitors are eliminated after relatively few games. The double-elimination

phase in our tournament design ensures that each team plays at least two games before it

is eliminated, while maintaining Condorcet-consistency and monotonicity (and 2-SNM-1/3

under Model 1). While not matching the three of standard group play, note that the only

78

teams that do not play at least three matches are the ones that lose their first two matches.

In the current tournament, teams which have lost their first two matches are usually de facto

eliminated anyway,12 so the loss is minimal.

We also compare our design to a modification of 2016 Olympic format where the group

play phase is maintained, but we allow only one team to advance per group. Such a modifica-

tion to Olympic format should make it immune to the flaws we highlighted in subsection 4.1.3

but has drawbacks in practice. The group play phase suffers from the possibility of tied teams

(requiring a tie-breaker to choose the team that advances). Indeed, in the 2012 Olympics

badminton Women’s doubles tournament the two groups that did not have teams disqual-

ified each had a 3-team tie for first. In 2016, one group similarly ended in a 3-way tie.

Tie-breakers induce two difficulties. First, a three-way tie for first will create a team which

(a) is eliminated with only one loss and (b) defeated the team that advanced (perhaps even

the eventual champion). Such a team has a potential argument that it “should have been

the champion” (since it performed no worse than the eventual champion in group play, and

actually beat them head-to-head). Our design ensures that the team that advances won at

least half of the games against each opponent it played, eliminating that sort of argument.

Second, the schedule may give an inherent advantage to one of the teams in the tie-breaker.

When these ties occur, by the start of the third-match one of the three teams is de facto

eliminated (regardless of how it plays in that match, it could not advance). In those in-

stances, one should be concerned that the team will “give up” and not perform as well. In

that scenario, the team that plays them last could benefit in the tie-breaker from a large

margin-of-victory.

In addition to avoiding the problems above, we note a few benefits of our design. A

benefit of the 2012 and 2016 designs is that they can forgive an early loss. A team could

lose an early match (perhaps on a fluke or due to start-of-tournament jitters) and still have

12By which we mean, they cannot win the tournament regardless of the outcomes of the remaining
matches. In the women’s 2012 and 2016 tournaments, 12 teams lost their first two matches. Only two
were not de facto eliminated, and 8 of the 12 were playing in a match against another de facto eliminated
team.

79

a chance to advance. Our tournament increases forgiveness to very early losses. In regular

group play, a team with one loss must rely on the results of matches between other teams

to advance (to avoid being eliminated in a potential three-way tie for first). For double-

elimination group play, after a loss in the first two matches teams still “control their own

destiny” (as long as they continue to win, they will become champion, regardless of other

matches).

As a final practical note, the new design requires no more matches than the current one.

Indeed, (a subset of) the same schedule can even be used: Games 1 and 2 take the place of

the first matches of group play, 3 and 4 in place of the second matches. Game 5 takes the

place of the third matches of group play. Game 6 takes the place of the quarterfinals of the

knockout.

4.4 Conclusion

We have shown that, despite assertions to the contrary, the 2016 and 2020 Olympic Bad-

minton tournaments are vulnerable to manipulation – indeed were the exact situation from

2012 to arise, the teams would have significant incentive to lose. We provide a potential al-

ternative that (under some assumptions) provably has the best-possible strategy-proofness,

while maintaining every team playing at least two games and ensuring that an early fluke

loss will not eliminate a team. Moreover, the proof (or at least its intuition) can be easily

explained to the athletes: if you lose, you have to win all the games you would have otherwise

and an additional one. This ensures not just that they will not benefit from losing, but also

that they will not think they will benefit from losing.

We leave open whether there are better replacements for group play. In particular, a

tournament that forgave a first-loss (regardless of when it occurred) or one which had better

SNM properties would be of interest. Additionally, our format also does not allow for draws

(like the FIFA World Cup group play does). It would also be interesting to try to extend

these constructions to work with other numbers of teams – 3 team and 6 team groups are

used in other competitions. A 3-team version (or alternative), would be of particular interest,

80

since the FIFA world Cup plans to transition to 3-team groups for 2026.

More generally, our work shows the importance of considering the exact scenarios practi-

tioners care about: there turn out to be constructions for n = 4 which we cannot extend to

the arbitrarily large n that theoreticians usually consider. Considering both regimes should

be of interest to the theory community and lead to more usable results.

81

Chapter 5

CONCLUSION

We conclude with of a common thread in the work above and how it might apply to

future work. In all cases, the key technical insights used long-standing tools; we discuss

these tools again and whether they might be useful to further progress on these topics.

In Chapter 2, the key technical insight came from an analysis of the rotation poset, a

fundamental object in the study of stable matchings known since the 1980s. The rotation

poset is a powerful tool for understanding stable matchings, and it is doubtful we have

fully exploited its description in bounding the number of stable matchings. It is very likely

additional insight and a more careful argument could substantially reduce C from its current

value of 217.

In Chapter 3, the key tool was hierarchically separated trees, a tool developed in the

1990s. In this case, the tool has been used to its fullest extent in this problem – there are

metric spaces which induce Ω(log n) distortion, so a new tool would be required to break

this barrier. There is good reason to believe that breaking this barrier is not possible at all;

there is a lower bound on randomized algorithms that nearly matches the performance of the

best known algorithms (see section 3.3.1). Closing this gap remains open. Combinatorial

tools may well be suitable for generating a new lower bound, but significant care would be

required to improve over the current bounds by the necessary log log n factor.

In Chapter 4, we needed simply the definitions of the problem and axioms of probability.

The obvious open problems in this area is to adapt our group play design to handle different

numbers of teams and allowing matches to end in draws. The literature on this problem so

far has only used combinatorial tools – they will likely continue to be well-suited to these

problems, but we will need new insights to really extend these results to answer the open

82

questions.

The age of the tools used did not prevent us from making progress: Chapter 2 makes

significant progress on a problem open since the 1970s, while Chapter 4 includes (to the best

of our knowledge) the first non-trivial proof of monotonicity of a tournament. Meanwhile,

in Chapter 3, we are able to connect ideas from two previously-separate lines of literature

on closely related problems.

Of course, we do not mean to suggest that more modern tools are not incredibly useful.

We simply observe that classic tools can still be employed both to make progress and to

make connections in the literature, and are likely to be useful in further progress on these

problems.

83

BIBLIOGRAPHY

[AAC+17] Itai Ashlagi, Yossi Azar, Moses Charikar, Ashish Chiplunkar, Ofir Geri, Haim
Kaplan, Rahul Makhijani, Yuyi Wang, and Roger Wattenhofer. Min-cost bipar-
tite perfect matching with delays. In LIPIcs-Leibniz International Proceedings
in Informatics, volume 81. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2017.

[ACK17] Yossi Azar, Ashish Chiplunkar, and Haim Kaplan. Polylogarithmic bounds on
the competitiveness of min-cost perfect matching with delays. In Proceedings
of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’17, pages 1051–1061, Philadelphia, PA, USA, 2017. Society for Industrial
and Applied Mathematics.

[AJF18] Yossi Azar and Amit Jacob-Fanani. Deterministic min-cost matching with de-
lays. arXiv preprint arXiv:1806.03708, 2018.

[AK10] Alon Altman and Robert Kleinberg. Nonmanipulable randomized tournament
selections. In Twenty-Fourth AAAI Conference on Artificial Intelligence, 2010.

[AKL17] Itai Ashlagi, Yash Kanoria, and Jacob D Leshno. Unbalanced random match-
ing markets: The stark effect of competition. Journal of Political Economy,
125(1):69–98, 2017.

[APT09] Alon Altman, Ariel D Procaccia, and Moshe Tennenholtz. Nonmanipulable
selections from a tournament. In Twenty-First International Joint Conference
on Artificial Intelligence, 2009.

[Bar96] Yair Bartal. Probabilistic approximation of metric spaces and its algorithmic
applications. In Proceedings of 37th Conference on Foundations of Computer
Science, pages 184–193. IEEE, 1996.

[BBMN15] Nikhil Bansal, Niv Buchbinder, Aleksander Madry, and Joseph (Seffi) Naor.
A polylogarithmic-competitive algorithm for the k-server problem. J. ACM,
62(5):40:1–40:49, November 2015.

[BCK95] Arthur T Benjamin, Cherlyn Converse, and Henry A Krieger. How do I marry
thee? Let me count the ways. Discrete Applied Mathematics, 59(3):285–292,
1995.

84

[Bel] Ken Belson. Olympic ideal takes beating in badminton. The New York Times.

[Ber] Howard Berkes. Badminton takes swing at avoiding repeat of london scandal.
National Public Radio.

[BGR08] Nayantara Bhatnagar, Sam Greenberg, and Dana Randall. Sampling stable
marriages: why spouse-swapping won’t work. In Proceedings of the nineteenth
annual ACM-SIAM symposium on Discrete algorithms, pages 1223–1232. Soci-
ety for Industrial and Applied Mathematics, 2008.

[BKLS18] Marcin Bienkowski, Artur Kraska, Hsiang-Hsuan Liu, and Pawe l Schmidt. A
primal-dual online deterministic algorithm for matching with delays. arXiv
preprint arXiv:1804.08097, 2018.

[BKS17a] Marcin Bienkowski, Artur Kraska, and Pawe l Schmidt. A match in time saves
nine: Deterministic online matching with delays. In International Workshop on
Approximation and Online Algorithms, pages 132–146. Springer, 2017.

[BKS17b] Marcin Bienkowski, Artur Kraska, and Pawe l Schmidt. A match in time
saves nine: Deterministic online matching with delays. arXiv preprint
arXiv:1704.06980, 2017.

[Bor] Sam Borden. The goal is winning gold, not winning every match. The New York
Times.

[CGM12] Prasad Chebolu, Leslie Ann Goldberg, and Russell Martin. The complexity
of approximately counting stable matchings. Theoretical Computer Science,
437:35–68, 2012.

[Csa17a] László Csató. European qualifiers to the 2018 fifa world cup can be manipulated,
2017.

[Csa17b] László Csató. Overcoming the incentive incompatibility of tournaments with
multiple group stages. arXiv preprint arXiv:1712.04183, 2017.

[Csa18] László Csató. Incentive compatible designs for tournament qualifiers with round-
robin groups and repechage. arXiv preprint arXiv:1804.04422, 2018.

[DBŚ13] Ewa Drgas-Burchardt and Zbigniew Świtalski. A number of stable matchings in
models of the gale–shapley type. Discrete Applied Mathematics, 161(18):2932–
2936, 2013.

85

[DGGJ04] Martin Dyer, Leslie Ann Goldberg, Catherine Greenhill, and Mark Jerrum. The
relative complexity of approximate counting problems. Algorithmica, 38(3):471–
500, 2004.

[DM10] Brian C Dean and Siddharth Munshi. Faster algorithms for stable allocation
problems. Algorithmica, 58(1):59–81, 2010.

[dra] Badminton world federation statutes. https://corporate.bwfbadminton.

com/statutes.

[EKW16] Yuval Emek, Shay Kutten, and Roger Wattenhofer. Online matching: haste
makes waste! In Proceedings of the 48th Annual ACM SIGACT Symposium on
Theory of Computing, pages 333–344. ACM, 2016.

[FRT04] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on ap-
proximating arbitrary metrics by tree metrics. Journal of Computer and System
Sciences, 69(3):485–497, 2004.

[GI89] Dan Gusfield and Robert W Irving. The stable marriage problem: structure and
algorithms. MIT press, 1989.

[GJ12] Leslie Ann Goldberg and Mark Jerrum. Approximating the partition function
of the ferromagnetic potts model. Journal of the ACM (JACM), 59(5):25, 2012.

[GS62] David Gale and Lloyd S Shapley. College admissions and the stability of mar-
riage. The American Mathematical Monthly, 69(1):9–15, 1962.

[IL86] Robert W Irving and Paul Leather. The complexity of counting stable marriages.
SIAM Journal on Computing, 15(3):655–667, 1986.

[IM05] Nicole Immorlica and Mohammad Mahdian. Marriage, honesty, and stability.
In Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algo-
rithms, pages 53–62. Society for Industrial and Applied Mathematics, 2005.

[Kel] Paul Kelso. Badminton pairs expelled from london 2012 olympics after ’match-
fixing’ scandal. The Telegraph.

[Kel12] Paul Kelso. Badminton pairs expelled from london 2012 olympics after match-
fixingscandal. The Telegraph Newspaper, 1 August, 2012.

[KMP90] Donald E Knuth, Rajeev Motwani, and Boris Pittel. Stable husbands. Random
Structures & Algorithms, 1(1):1–14, 1990.

https://corporate.bwfbadminton.com/statutes
https://corporate.bwfbadminton.com/statutes

86

[Knu76] Donald Ervin Knuth. Mariages stables et leurs relations avec d’autres
problèmes combinatoires: introduction à l’analyse mathématique des algo-
rithmes. Montréal: Presses de l’Université de Montréal, 1976.

[Knu97] Donald Ervin Knuth. Stable marriage and its relation to other combinato-
rial problems: An introduction to the mathematical analysis of algorithms, vol-
ume 10. American Mathematical Soc., 1997. English translation of Mariages
stables.

[KOGW18] Anna R Karlin, Shayan Oveis Gharan, and Robbie Weber. A simply exponential
upper bound on the maximum number of stable matchings. In Proceedings of
the 50th Annual ACM SIGACT Symposium on Theory of Computing, pages
920–925, 2018.

[Lei] John Leicester. Column: Ideals, reality clash at olympic badminton. Associated
Press.

[Lev17] Avi Levi. Novel uses of the Mallows model in coloring and matching. PhD thesis,
University of Washington, 2017.

[LPWW18] Xingwu Liu, Zhida Pan, Yuyi Wang, and Roger Wattenhofer. Impatient online
matching. In 29th International Symposium on Algorithms and Computation
(ISAAC 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[Mal57] Colin L Mallows. Non-null ranking models. i. Biometrika, 44(1/2):114–130,
1957.

[Man13] David F Manlove. Algorithmics of matching under preferences, volume 2. World
Scientific, 2013.

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Cambridge
university press, 1995.

[Pau14] Marc Pauly. Can strategizing in round-robin subtournaments be avoided? Social
Choice and Welfare, 43(1):29–46, 2014.

[Pit89] Boris Pittel. The average number of stable matchings. SIAM Journal on Discrete
Mathematics, 2(4):530–549, 1989.

[Pit17a] Boris Pittel. On likely solutions of the stable matching problem with unequal
numbers of men and women. arXiv preprint arXiv:1701.08900, 2017.

87

[Pit17b] Boris Pittel. On random exchange-stable matchings. arXiv preprint
arXiv:1707.01540, 2017.

[Pit17c] Boris Pittel. On random stable partitions. arXiv preprint arXiv:1705.08340,
2017.

[Ram12] Catherine Rampell. 2 From U.S. win Nobel in economics. The New York Times,
October 15, 2012.

[Rot15] Alvin E Roth. Who Gets What–and Why: The New Economics of Matchmaking
and Market Design. Houghton Mifflin Harcourt, 2015.

[RS92] Alvin E Roth and Marilda A Oliveira Sotomayor. Two-sided matching: A study
in game-theoretic modeling and analysis. Cambridge University Press, 1992.

[RT81] Edward M Reingold and Robert E Tarjan. On a greedy heuristic for complete
matching. SIAM Journal on Computing, 10(4):676–681, 1981.

[SSW17] Jon Schneider, Ariel Schvartzman, and S Matthew Weinberg. Condorcet-
consistent and approximately strategyproof tournament rules. In 8th In-
novations in Theoretical Computer Science Conference (ITCS 2017). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[Sta53] John M Stalnaker. The matching program for intern placement. Academic
Medicine, 28(11):13–19, 1953.

[Sta11] Georgios K. Stathopoulos. Variants of stable marriage algorithms, complexity
and structural properties. Master’s thesis, University of Athens, Department of
Mathematics, 2011.

[SW13] Isabelle Stanton and Virginia Vassilevska Williams. The structure, efficacy,
and manipulation of double-elimination tournaments. Journal of Quantitative
Analysis in Sports, 9(4):319–335, 2013.

[Thu02] Edward G Thurber. Concerning the maximum number of stable matchings in
the stable marriage problem. Discrete Mathematics, 248(1-3):195–219, 2002.

[Von17] Allen IK Vong. Strategic manipulation in tournament games. Games and Eco-
nomic Behavior, 102:562–567, 2017.

[WS11] David P Williamson and David B Shmoys. The design of approximation algo-
rithms. Cambridge university press, 2011.

88

[Yao77] Andrew Chi-Chin Yao. Probabilistic computations: Toward a unified measure
of complexity. In 18th Annual Symposium on Foundations of Computer Science
(sfcs 1977), pages 222–227. IEEE, 1977.

	List of Figures
	Introduction
	Counting Stable Matchings
	Online Matching
	Tournament Design

	A Simply Exponential Upper Bound on the Maximum Number of Stable Matchings
	Introduction
	Preliminaries and main technical theorem
	Proof of main technical theorem
	Rotations and the rotation poset
	Conclusion

	Online Matching
	Introduction
	Intuition via Examples
	Randomized MPMD algorithms
	Deterministic MPMD Algorithms
	Extensions of MPMD
	Our Initial Work – Stochastic Setting
	Our Initial Work – Adversarial Setting
	Open Problems

	Tournament Design: Creating Good Matchups in Sports
	Introduction
	2012 Badminton Incident and Olympics Response
	Double-Elimination Design
	Conclusion

	Conclusion
	Bibliography

