CS4Teachers Data Structures and Algorithms for K-12
Education: Sorting*

Robbie Weber

Abstract

Data structures and algorithms is about finding better ways of getting things done.
A very common thread in elementary data structures and algorithms is that sorted data
is easier to use than unsorted data. In this document, I'll outline ideas for activities
related to data structures and algorithms for students from elementary school through
high school. With each activity, I have listed the main takeaway for students.

1 Why Does Sorting Help (All ages!)

Takeaways Intuition for binary search. Along with the idea that if something is in order,
you know where to look for it. Hopefully, the ability to search for things in real-life (say for
books in a library) a little bit more efficiently.

Activity Take 20 notecards, and label each of them with one of the numbers from 1-20.
Show the students the notecards, then place 15 face-down, and keep 5 in your back pocket
(without letting the students see which are in which group). Ask the students to determine
whether one of the cards is in your pocket or on the table by turning over the fewest number
of cards on the table.

For this first round, the students will have no information about which cards are where until
they are flipped over. There is no strategy that works better than the obvious one: flip over
any card until you find the one you're looking for, or until all on the table are flipped (in
which case the card can only be in the teacher’s pocket).

You may want to try one round with the card in your pocket and one on the table.

Now, it’s time to see the benefits of sorting. Repeat the setup, but place face-down cards in
sorted order, and promise the students that the list it is sorted. I'd recommend putting a
marker “small numbers” on one end and “big numbers” on the other. With the same goal,
suggest they flip over middle card. Ask where desired card could be/couldn’t be. Help them
realize that they don’t have to flip over one half of the cards to know that the target card is
not there.

*This document gives more details on three possible activities involving data structures and algorithms
content for K-12 education. It was originally written for a session as part of the |(CS4Teachers summer
program.

https://cs4teachers.cs.washington.edu/

Depending on age of your students, you might want to continue having them take middle
card or see if they come up with idea.

Real world uses Follow-up the activity with a trip to the library, and look for a particular
book. What does it mean to be “in the middle” now? Will it be faster than just checking
each individual book?

2 How Do We Sort? (Middle School and up)

Have a mat with ten|I| marked spots for cards in a line, and two extra marked spot above the
line of ten. Have each student make 10 notecards, each with a different integer on themP]
Your students will start with the cards (unsorted) in the 10 spots, and execute various
algorithms to sort the list. Humans will try to take shortcuts or make intuitive “jumps”
to sort faster — that’s normal! But it’s not something that computers can do. We give
computers the steps to do, and it does them all. No shortcuts (except those we clearly define
in the algorithm).

To sort a little more similarly to the way computers do, your students will have to follow
these rules: You can only touch one card at a time. Cards have to be in you hand (only
one) or in one of the 10 spots of the array (the “main list” of numbers) , or in one of the
two extra spots.

s

Main List

The sorting humans can do under these rules match very closely to what computers can do
with a single “temporary” variable Have students execute these sorts:

1Or some slightly larger/smaller number, depending on their age.
2The exact numbers do not really matter, though I'd recommend not just using numbers 1-10. If you do,
students can too easily predict the final spot of each of the numbers.

2.1

Selection Sort

Students will make a “sorted area” on the left, and an “unsorted area” on the right. At
the start, the sorted area is empty. Place an arrow to the left of the first card to mark the
border.

Until the “sorted area” is the full line:

1.

2.

2.2

Place the first (i.e., left-most) element of the unsorted area in the first extra spot.

Moving from left to right, if an element in the main area is smaller than the one in the
extra spot, swapE] them.

. When you reach the end of the main area, take whatever is in the first extra spot, and

place it in the empty location in the arrayﬂ

If you've done it right, your “sorted area” is now one spot larger. Move the arrow one
spot to the right.

. If your arrow is at the end of the list, you're done! Otherwise go back to step 1.

Insertion Sort

Students will again make a “sorted area” on the left, but will do it differently with this
algorithm. Start with a single card as your sorted area, so place an arrow between spots one
and two. Until the sorted area is the full line:

d.

. Move the first element from the unsorted array to the first extra spot (this is the card

you will insert).

. Compare the element in the extra spot to the current “gap” in the sorted area — if the

extra spot card is less than the card to the left of the gap, move the gap to the left (by
moving the card to the left of the gap one spot to the right).

Repeat the step above until the gap is all the way at the left of the main list, or the
card in the extra spot is greater than the one to the left of the gap. At that point,
move the card from the extra spot down to fill the gap.

If you've done it right, your “sorted area” is now one spot larger. Move the arrow one
spot to the right.

If your arrow is at the end of the list, you're done! Otherwise go back to step 1.

3

swapping is hard when you can only have one in your hands! You’ll have to use the second extra spot

as a temporary location to perform the swap
4if you've swapped correctly, it will be the smallest number that isn’t already in the sorted area

2.3 Quicksort

A recursive algorithm. Start with the full list.

1. Place the leftmost card in the first extra spotﬂ. Place the blue arrow on spot 2 (i.e.,
pointing directly at the first remaining element in the list) and the orange arrow on
the last spot.

2. Until the orange and blue arrows point to the same spot: look at the card the blue
arrow is pointing to:

e If the arrow is pointing to a smaller card than the card in the first extra spot,
move the blue arrow one spot to the right.

e Otherwise, Swap the card the blue arrow is pointing to with the card the orange
arrow is pointing to, then move the orange arrow to the left.

e Repeat this step.

3. When the orange and blue arrows point to the same spot, compare the pointed to card
and the card in the extra spot:

e If the pointed to card is larger, take the card to the left of the arrows, and move
it to the gap at the far left. Then move the card in the extra spot to the newly-
created gap.

e If the pointed to card is smaller, move the pointed to card to the far left. Then
move the card in the extra spot to the newly-created gap.

4. If you've followed these steps correctly, the area you just worked on is now: everything
smaller than the pivot (possibly not in order), the pivot (that is, the card that spent
the algorithm in the first extra spot), then everything larger than the pivot (again, not
necessarily in order).

5. Now, repeat this full algorithm on the left-side only (that is go back to step 1), pre-
tending the pivot and everything larger don’t existﬁ

6. Then, repeat these steps on the right-side only.

5This card is usually called the “pivot”
6An algorithm like this, that refers to itself, is called “recursive.” You’ll probably want to keep track of
which areas have and haven’t been sorted, as you’ll have a few “levels” of recursion waiting to be done.

4

2.4 Merge sort

Execute as a class! Give most of your student{’| numbers to wear, and place them into
individual “lists” of size 1. (You might want spots marked on the ground for this). Then
pair the lists, and for every pair of lists execute this “merge” step:

1. Each list starts sorted smallest to largest.

2. Until one list is empty, look at the smallest element remaining in each list, take the
smaller of the two and place them in the lowest open spot in the merged array.

3. When one list is empty, but the other isn’t, take someone from the non-empty array.

4. The new list is sorted in order!

Repeat the “pair lists off and merge” process (you'll halve the number of lists each time)
until you have a fully sorted list.

Merge sort is a great example of a parallelizable algorithm — if you have more computers, you
can sort faster[f| Once you've run the algorithm with just one person doing all the merging
one at a time, try it again with (say) 4 “computers” each taking 1/4 of the lists until there
are 4 lists left (at the end, have two people merge from 4 lists to 2, and one merge from 2 to
1). See if this version goes any faster.

3 A Data Structure for Sorting (high school students)

Why do programmers use data structures? We saw with binary search (the algorithm in
section 1) that having sorted data makes it easier to find what you're looking for. A data
structure will make it easier to maintain that being-sorted-benefit under updates (can we still
use the data structure after we’ve added or removed many elements) — if you add something
to a sorted list, you have to put it in the correct spot or the list won’t be sorted anymore!

Our scenario is choosing the next TikTok to show to a user; our job is to maintain a set
of all the videos we might recommend, where each video has a “priority” — a score that
corresponds to how much we think our user will like the video. The higher the number, the
more we want to show the video.

"preferable, a power-of-two number of students

8something like selection sort isn’t — it’s hard to get separate jobs for each computer to do where they
wouldn’t interfere with each other. With mergesort, you can break up the lists and have multiple processors
working until the very end.

3.1 Designing a Heap

A heap is a data structure that follows the following rules:

1. A Binary Tree

2. Every node is greater than or equal to all its children (in particular, the largest element
must be the root!)

3. The tree is complete That is, every level of the tree is completely filled, except possibly
the last row which is filled from left to right.

In the session we discussed how to removeMax from a heap (that is to remove the maximum-
valued node and then restore the data structure to being a valid heap) and how to insert
into a heap. The basic ideas are:

removeMax

1. Remove the root.
2. Take the farthest right node from the bottom row, and put it in the root’s location.

3. Percolate the new root down where it belongs, by repeated swapping the node with
the larger of its children until the node is larger than both of its children.
insert
1. Create a new node with the new datapoint at the bottom-right of the heap.
2. Percolate the new node up to where it belongs, by repeated swapping the node with

its parent until the node is smaller than its parent.

See the slides from the session for some examples.

3.2 Analyzing the heap

Big idea: How many data points fit in a heap?

https://drive.google.com/drive/folders/1U0DBIDXlbawDjbmBJElub2G_bmwnnfNd

How long does it take to insert and removeMax? Well, the slowest they could be would be
to swap from the top-to-the-bottom (or bottom-to-top). So the number of operations to do
is at most O(height of the heap) [

But we don’t want to leave our running time in terms of the height of the heap. Imagine
if another programmer, someone who wants to determine the number of content-creators a
person could safely subscribe to, comes to you and asks “hey, how many videos can a user
safely have in their list before it takes too long to get a video?” Telling them “Oh, it’s fine as
long as the height of the video heap is at most 15.” might be a true statement, but it won’t
be particularly useful statement for the other programmer. They might never have even
learned about heaps, let alone know how to translate that into an answer to their question —
someone shouldn’t need to know details about your implementation to know how to use it!
We want our running times in terms of n, the total number of videos in the data structure.

3.2.1 Converting from h to n

So, let’s say we have a tree with h levels in it. How many videos will fit in those h levels?
The first level (the root) has room for 1 node (the root!)

The second level (children of the root) has room for 2 nodes (the two children the root is
allowed)

The third level (grandchildren of the root) has room for 4 nodes (two children each for the
two nodes at the second level)

The fourth level (great-grandchildren) has room for 8 nodes

Continuing the pattern, at level h there will be 2"~! nodes (if it’s totally full).

So the most nodes we can fit is:

h
dort=2—1
=1

What does that mean for us? Well, we can set that expression equal to n for the most nodes
we could ﬁt.lT_U], so we'll have h = log,(n). This might make intuitive sense if you think about
what logs do — the number of nodes we can fit is about doubling at every level, so asking
“what power do I have to raise 2 to get the number of nodes? it should be about the height,
if each new level has about as many nodes as all the levels before it combined.”

With this calculation, we can say that the worst-case running times for insert and removeMax

9Tf you haven’t seen big-O notation before, the O() means “don’t worry about constant factors or lower
order terms” so 2log(n), 3log(n) + 5, and log(n — 1) would all be “O(logn)”, because that’s the “leading
term.” A lot of implementation details are being swept under the rug for this document. If you want to
know enough to write this code yourself, you should learn some common implementation tricks, especially
how to store the heap in an array instead of using pointers.

10Tf you're worried about the least nodes that could be there, remember that we have to completely fill a
level before going to the next one, so we have at least 2"~! nodes

for a heap with n elements are both O(logn).

Takeaways: Practice with finding closed forms of summations and logarithms; also potential
motivation for these topics when first introduced in algebra courses.

3.3 Compare and Contrast

A heap is a great data structure for these two operations, but it’s not the only way of
organizing this data! There are a few other very reasonable choices, each with their own
pros and cons. In a data structures class, we spend a lot of time discussing benefits and
drawbacks and practicing how to frame discussions and rather little time giving easy answers.

As an additional activity, have students analyze how they would perform the same tasks
(removeMax and insert) if they were using an array that they kept sorted, and an array
that they just left unsorted.

Here is a table comparing three possible implemtnations, and their worst-case running times
with n videos[]]

Data Structure | removeMax | insert
Heap O(log(n)) | O(log(n))
Sorted Array O(1) O(n)
Unsorted Array O(n) O(1)

So which should you use? It depends! The heap offers the best balance of running times,
but it isn’t strictly better than either of the other two options. It’s very easy to maintain an
unsorted array because it has minimal structure (insertion is very fast, because there aren’t
strict sorting rules to follow. Just put it anywhere, it’s fine). But without much structure,
it’s very slow to find the next video to show. Conversely, a sorted array has insert being
quite slow because it has too much structure — you can find where to put it with binary
search, but you might have to shift a lot of elements to make room. The “partially sorted”
nature of a heap balances the amount of structure so you can remove the max and insert
significantly faster than O(n), but neither is O(1). If for some reason you absolutely need
constant time on one of those operations, you should use the other implementations!

1Students might get slightly different times for slightly different implementations (for example, the running
time of insert in an unsorted array depends on where the student chooses to insert the new element), but
I don’t know a way to do better than these times.

3.4 Extensions

There are lots of other operations we might want our data structure to perform; here are
some common ones, along with comparisons to other options.

DecreaseKey given an element, change its priority to a smaller number.
Motivation: we dont want to show videos once they stopped being viral. Over time, we
should decrease the “priority” of the videos.

Build given an unordered list of videos, turn them into the data structure.

Motivation: we have to start somewhere! When someone makes a new account, they’ll
probably start with a few recommended videos, use those as the starting point (we could
insert them one at a time, but maybe there’s a faster way).

Expanding our table:

Data Structure | removeMax | insert | decreaseKey Build
Heap O(log(n)) | O(log(n)) | O(log(n)) O(n)
Sorted Array O(1) O(n) O(n) O(nlogn)
Unsorted Array O(n) O(1) O(1) O(1)

The details of these running times depend quite a bit on the exact implementations, and
might need some extra data structures['?]

To build on a heap quickly, use Floyd’s BuildHeap. Multiple sorting algorithms are available
to sort an array efficiently. As before, the less structured a data structure is, the faster you
can insert, but the slower it is to use it.

3.5 Some other uses of heaps

If your students don’t like TikTok, here are some other scenarios where heaps might be
useful:

e Keep track of a list of your homework assignments, and decide which to work on next.
The priority can be a combination of the work required and the time until due date.

e Keep track of the features you want to add to your app.

e At Hogwarts, professors can take points away from houses when students misbehave.
Some professors (Snape) have been accused of removing more points from rival houses

12To decreaseKey, for example, you would need to find the node to move it. That may require extra
dictionar(ies). And build speed might depends on whether you need to copy over all the datapoints first.

https://en.wikipedia.org/wiki/Binary_heap#Building_a_heap

than their own. Dumbledore decides to keep track of all the incidents involving the
removal of points, ordered by how many were lost, for him to investigate on slower
days.

e Instead of answering emails in the order they arrive, you decide to order them by when
you need to respond.

10

	Why Does Sorting Help (All ages!)
	How Do We Sort? (Middle School and up)
	Selection Sort
	Insertion Sort
	Quicksort
	Merge sort

	A Data Structure for Sorting (high school students)
	Designing a Heap
	Analyzing the heap
	Converting from h to n

	Compare and Contrast
	Extensions
	Some other uses of heaps

